MPS2907A Series

General Purpose Transistors

PNP Silicon

Features

- These are $\mathrm{Pb}-$ Free Devices*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	-60	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	-60	Vdc
Emitter - Base Voltage	$\mathrm{V}_{\text {EBO }}$	-5.0	Vdc
Collector Current - Continuous	I_{C}	-600	mAdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	625	mW
Derate above 25 $5^{\circ} \mathrm{C}$		5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	1.5	W
Derate above 25 $5^{\circ} \mathrm{C}$			

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\theta \mathrm{JC}}$	83.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

DEVICE MARKING

Device	Line 1	Line 2
MPS2907AG	MPS	2907 A
MPS2907ARLG	MPS2	907 A
MPS2907ARLRAG	MPS	2907
MPS2907ARLRPG	MPS	2907

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

[^0]ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (Note 1) ($\mathrm{I}_{\mathrm{C}}=-10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{V}_{\text {(BR) }}$ CEO	-60	-	Vdc
Collector-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{E}}=0$)	$\mathrm{V}_{\text {(BR) } \mathrm{CbO}}$	-60	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{C}}=0$)	$\mathrm{V}_{\text {(BR) }{ }^{\text {ebo }} \text { (}}$	-5.0	-	Vdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CE}}=-30 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EB} \text { (off) }}=-0.5 \mathrm{Vdc}$)	ICEX	-	-50	nAdc
$\begin{aligned} & \text { Collector Cutoff Current } \\ & \quad\left(V_{C B}=-50 \mathrm{Vdc}, I_{E}=0\right) \\ & \left(V_{C B}=-50 \mathrm{Vdc}, I_{E}=0, T_{A}=150^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{I}_{\text {cbo }}$	-	$\begin{gathered} -0.01 \\ -10 \end{gathered}$	$\mu \mathrm{Adc}$
Base Current ($\left.\mathrm{V}_{\mathrm{CE}}=-30 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EB} \text { (off) }}=-0.5 \mathrm{Vdc}\right)$	I_{B}	-	-50	nAdc

ON CHARACTERISTICS

$\begin{aligned} & \text { DC Current Gain } \\ & \left(\mathrm{I}_{\mathrm{C}}=-0.1 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=-1.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=-10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=-150 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{Vdc}\right)(\text { Note 1) } \\ & \left(\mathrm{I}_{\mathrm{C}}=-500 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{Vdc}\right)(\text { Note 1) } \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & 75 \\ & 100 \\ & 100 \\ & 100 \\ & 50 \end{aligned}$	$\begin{gathered} - \\ - \\ - \\ 300 \end{gathered}$	
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage (Note 1) } \\ & \left(I_{C}=-150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-15 \mathrm{mAdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=-500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-50 \mathrm{mAdc}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$		$\begin{aligned} & -0.4 \\ & -1.6 \end{aligned}$	Vdc
Base-Emitter Saturation Voltage (Note 1) $\left(I_{C}=-150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-15 \mathrm{mAdc}\right)$ ($\mathrm{IC}_{\mathrm{C}}=-500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-50 \mathrm{mAdc}$)	$V_{\text {BE (sat) }}$	-	$\begin{aligned} & -1.3 \\ & -2.6 \end{aligned}$	Vdc

SMALL-SIGNAL CHARACTERISTICS

Current-Gain - Bandwidth Product (Notes 1 and 2), $\left(\mathrm{I}_{\mathrm{C}}=-50\right.$ mAdc, $\left.\mathrm{V}_{\mathrm{CE}}=-20 \mathrm{Vdc}, \mathrm{f}=100 \mathrm{MHz}\right)$	f_{T}	200	-	MHz
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=-10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {obo }}$	-	8.0	pF
Input Capacitance $\left(\mathrm{V}_{\mathrm{EB}}=-2.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ibo}}$	-	30	pF

SWITCHING CHARACTERISTICS

Turn-On Time	$\left(\mathrm{V}_{\mathrm{CC}}=-30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=-150 \mathrm{mAdc}\right.$, $\mathrm{I}_{\mathrm{B} 1}=-15 \mathrm{mAdc}$) (Figures 1 and 5)	$\mathrm{t}_{\text {on }}$	-	45	ns
Delay Time		t_{d}	-	10	ns
Rise Time		tr_{r}	-	40	ns
Turn-Off Time	$\begin{gathered} \left(\mathrm{V}_{\mathrm{CC}}=-6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=-150 \mathrm{mAdc},\right. \\ \left.\mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=15 \mathrm{mAdc}\right)(\text { Figure 2 }) \end{gathered}$	$\mathrm{t}_{\text {off }}$	-	100	ns
Storage Time		$\mathrm{t}_{\text {s }}$	-	80	ns
Fall Time		t_{f}	-	30	ns

1. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.
2. f_{T} is defined as the frequency at which $\left|\mathrm{h}_{\mathrm{fe}}\right|$ extrapolates to unity.

MPS2907A Series

Figure 1. Delay and Rise Time Test Circuit

Figure 2. Storage and Fall Time Test Circuit

TYPICAL CHARACTERISTICS

Figure 3. DC Current Gain

Figure 4. Collector Saturation Region

MPS2907A Series

ORDERING INFORMATION

Device	Package	Shipping †
MPS2907AG	TO-92 $($ Pb-Free $)$	5000 Units / Bulk
MPS2907ARLG	TO-92 $($ Pb-Free $)$	$2000 /$ Tape \& Reel
MPS2907ARLRAG	TO-92 (Pb-Free)	TO-92 (Pb-Free)
MPS2907ARLRPG	$2000 /$ Ammo Pack	

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Figure 5. Turn-On Time

Figure 6. Turn-Off Time

MPS2907A Series

TYPICAL SMALL-SIGNAL CHARACTERISTICS
 NOISE FIGURE

$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Figure 7. Frequency Effects

Figure 9. Capacitances

Figure 8. Source Resistance Effects

Figure 10. Current-Gain - Bandwidth Product

Figure 11. Collector-Emitter Saturation
Voltage vs. Collector Current

Figure 12. Base-Emitter Turn-ON Voltage vs. Collector Current

MPS2907A Series

Figure 13. Base Emitter Saturation Voltage vs. Collector Current

STRAIGHT LEAD

BENT LEAD

STRAIGHT LEAD

BENT LEAD

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCHES
3. CONTOUR OF PACKAGE BEYOND DIMENSION RIS CONTOUR OF PACKA
4. DIMENSION F APPLIES BETWEEN DIMENSIONS P AND L. DIMENSIONS D AND J APPLY BETWEEN DIMENSIONS L AND K MINIMUM. THE LEAD
DIMENSIONS ARE UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIIUM.

	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
	0.175	0.205	4.44	5.21
B	0.290	0.310	7.37	7.87
C	0.125	0.165	3.18	4.19
D	0.018	0.021	0.46	0.53
F	0.016	0.019	0.41	0.48
G	0.045	0.055	1.15	1.39
H	0.095	0.05	2.42	2.66
J	0.018	0.024	0.46	0.61
K	0.500	---	12.70	---
L	0.250	---	6.35	---
N	0.080	0.105	2.04	2.66
P	---	0.100	--	2.54
R	0.135	---	3.43	---
V	0.135	---	3.43	---

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCHES.
3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
4. DIMENSION FAPPLIES BETWEEN DIMENSIONS P AND L. DIMENSIONS D AND J APPLY BETWEEN DIMENSIONS L AND K MINIMUM. THE LEAD DIMENSIONS ARE UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIMUM.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.175	0.205	4.44	5.21
B	0.290	0.310	7.37	7.87
C	0.125	0.165	3.18	4.19
D	0.018	0.021	0.46	0.53
G	0.094	0.102	2.40	2.80
J	0.018	0.024	0.46	0.61
K	0.500	---	12.70	---
N	0.080	0.105	2.04	2.66
P	---	0.100	---	2.54
R	0.135	---	3.43	---
V	0.135	---	3.43	---

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-92 (TO-226) 1 WATT | PAGE 1 OF 2 |

[^1]
TO-92 (TO-226) 1 WATT

CASE 29-10 ISSUE A

STYLE 1:	
PIN 1.	EMITTER
2.	BASE
3.	COLLECTOR
STYLE 6:	
PIN 1.	GATE
2.	SOURCE \& SUBSTRATE
3.	DRAIN
STYLE 11:	
PIN 1.	ANODE
2.	CATHODE \& ANODE
3.	CATHODE
STYLE 16:	
PIN 1.	ANODE
2.	GATE
3.	CATHODE
STYLE 21:	
PIN 1.	COLLECTOR
2.	EMITTER
3.	BASE
STYLE 26:	
PIN 1.	VCC
2.	GROUND 2
3.	OUTPUT
STYLE 31:	
PIN 1.	GATE
2.	DRAIN
3.	SOURCE

STYLE 2:	
PIN 1.	BASE
2.	EMITTER
3.	COLLECTOR
STYLE 7:	
PIN 1.	SOURCE
2.	DRAIN
3.	GATE
STYLE 12:	
PIN 1.	MAIN TERMINAL 1
2.	GATE
3.	MAIN TERMINAL 2
STYLE 17:	
PIN 1.	COLLECTOR
2.	BASE
3.	EMITTER
STYLE 22:	
PIN 1.	SOURCE
2.	GATE
3.	DRAIN
STYLE 27:	
PIN 1.	MT
2.	SUBSTRATE
3.	MT
STYLE $32:$	
PIN 1.	BASE
2.	COLLECTOR
3.	EMITTER

STYLE 3:	
PIN 1.	ANODE
2.	ANODE
3.	CATHODE
STYLE 8:	
PIN 1.	DRAIN
2.	GATE
3.	SOURCE \& SUBSTRATE
STYLE 13:	
PIN 1.	ANODE 1
2.	GATE
3.	CATHODE 2
STYLE 18:	
PIN 1.	ANODE
2.	CATHODE
3.	NOT CONNECTED
STYLE 23:	
PIN 1.	GATE
2.	SOURCE
3.	DRAIN
STYLE 28:	
PIN 1.	CATHODE
2.	ANODE
3.	GATE
STYLE 33:	
PIN 1.	RETURN
2.	INPUT
3.	OUTPUT

STYLE 4: PIN 1.	CATHODE	STYLE 5: PIN 1.	DRAIN
2.	CATHODE	2.	SOURCE
3.	ANODE	3.	GATE
STYLE 9:		STYLE 10:	
PIN 1.	BASE 1	PIN 1.	CATHODE
2.	EMITTER	2.	GATE
3.	BASE 2	3.	ANODE
STYLE 14:		STYLE 15:	
PIN 1.	EMITTER	PIN 1.	ANODE 1
2.	COLLECTOR	2.	CATHODE
3.	BASE	3.	ANODE 2
STYLE 19:		STYLE 20:	
PIN 1.	GATE	PIN 1.	NOT CONNECTED
2.	ANODE	2.	CATHODE
3.	CATHODE	3.	ANODE
STYLE 24:		STYLE 25:	
PIN 1.	EMITTER	PIN 1.	MT 1
2.	COLLECTOR/ANODE	2.	GATE
3.	CATHODE	3.	MT 2
STYLE 29:		STYLE 30:	
PIN 1.	NOT CONNECTED	PIN 1.	DRAIN
2.	ANODE	2.	GATE
3.	CATHODE	3.	SOURCE
STYLE 34:		STYLE 35:	
PIN 1.	INPUT	PIN 1.	GATE
2.	GROUND	2.	COLLECTOR
3.	LOGIC	3.	EMITTER

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when acessed directly from the Document Repository. Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red.	
DESCRIPTION:	TO-92 (TO-226) 1 WATT	PAGE 2 OF 2	

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ON Semiconductor manufacturer:
Other Similar products are found below :
1.5SMC82AT3G 74LCX574WM STK621-068C-E KAF-0402-ABA-CD-B2 NBXSBA017LN1TAG KAF-3200-ABA-CP-B2 STK621-728S-

E AMIS30621AUA STK531U340A-E STK760-304-E FJAF6810DTU DBD250G STK621-713-E TIP115 LB11847-E
NBXHBA017LN1TAG LV8736V-MPB-H NCP694H12HT1G LA4631VC-XE CAT1025WI-25-G NDF04N60ZG-001 LA78040B-S-E NGTB30N120IHLWG LA6584M-MPB-E NVB60N06T4G LA6245P-CL-TLM-E STK621-043D-E BTA30H-600CW3G NBXHBA017LNHTAG P6SMB100AT3G NCP1129AP100G LV8406T-TLM-E MC100EL13DWG NGTB30N60SWG FW217A-TL-2WX FGPF4533 MC33201DG KA78L05AZTA KA378R33TU FST3126MX LV4904V-MPB-E STK672-400 SBM30-03-TR-E $\underline{\text { NCP1398BDR2G BTA25H-600CW3G LC89057W-VF4A-E NGB8206ANTF4G NB7VQ58MMNG CPH6531-TL-E NCP4683DSQ28T1G }}$

[^0]: download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^1]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
 rights of others.

