MPS6717

One Watt Amplifier Transistor

NPN Silicon

Features

• Pb-Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	80	Vdc
Collector - Base Voltage	V _{CBO}	80	Vdc
Emitter – Base Voltage	V _{EBO}	5.0	Vdc
Collector Current – Continuous	Ic	500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	1.0 8.0	W mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	2.5 20	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	125	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	50	°C/W

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

MPS6717 = Device Code A = Assembly Location

Y = Year
WW = Work Week
Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
MPS6717	TO-92	5000 Units / Bulk
MPS6717G	TO-92 (Pb-Free)	5000 Units / Bulk
MPS6717RLRA	TO-92	2000/Tape & Reel
MPS6717RLRAG	TO-92 (Pb-Free)	2000/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MPS6717

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	•	•	•	
Collector – Emitter Breakdown Voltage (Note 1) $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	80	-	Vdc
Collector – Base Breakdown Voltage $(I_C = 100 \mu Adc, I_E = 0)$	V _{(BR)CBO}	80	-	Vdc
Emitter – Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	5.0	-	Vdc
Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0)	I _{CBO}	-	0.1	μAdc
Emitter Cutoff Current $(V_{EB} = 5.0 \text{ Vdc}, I_C = 0)$	I _{EBO}	-	10	μAdc
ON CHARACTERISTICS	<u>.</u>		•	
DC Current Gain	h _{FE}	80 50	_ 250	_
Collector – Emitter Saturation Voltage (I _C = 250 mAdc, I _B = 10 mAdc)	V _{CE(sat)}	-	0.5	Vdc
Base-Emitter On Voltage (I _C = 250 mAdc, V _{CE} = 1.0 Vdc)	V _{BE(on)}	_	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS	,			•
Collector–Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	_	30	pF
Small–Signal Current Gain (I _C = 200 mAdc, V _{CE} = 5.0 Vdc, f = 20 MHz)	h _{fe}	2.5	25	-

^{1.} Pulse Test: Pulse Width \leq 300 μ s; Duty Cycle \leq 2.0%.

Figure 1. DC Current Gain

Figure 2. Collector Saturation Region

Figure 3. "On" Voltages

Figure 4. Base-Emitter Temperature Coefficient

Figure 5. Capacitance

Figure 6. Current-Gain — Bandwidth Product

Figure 7. Active Region — Safe Operating Area

TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE B

DATE 12 NOV 2020

STRAIGHT LEAD

TOP VIEW

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS.
- 4. DIMENSION 6 AND 62 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20.

	MILLIMETERS					
DIM	MIN.	N□M.	MAX.			
Α	3.75	3.90	4.05			
A1	1.28	1.43	1.58			
b	0.38	0.465	0.55			
b2	0.62	0.70	0.78			
C	0.35	0.40	0.45			
D	7.85	8.00	8.15			
ш	4.75	4.90	5.05			
E2	3.90	4.00	4.10			
e	1.27 BSC					
L	13.80 14.00 14.20					

STYLES AND MARKING ON PAGE 3

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 1 OF 3

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE B

DATE 12 NOV 2020

FORMED LEAD

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS.
- 4. DIMENSION 6 AND 62 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20.

	MILLIMETERS					
DIM	MIN.	N□M.	MAX.			
Α	3.75	3.90	4.05			
A1	1.28	1.43	1.58			
b	0.38	0.465	0.55			
b2	0.62	0.70	0.78			
C	0.35	0.40	0.45			
D	7.85	8.00	8.15			
E	4.75	4.90	5.05			
E2	3.90	4.00	4.10			
е	2.50 BSC					
L	13.80	14.00	14.20			
L2	13.20	13.60	14.00			
L3	3.00 REF					

STYLES AND MARKING ON PAGE 3

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 2 OF 3	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) 1 WATT

CASE 29-10 ISSUE B

DATE 12 NOV 2020

2.	EMITTER BASE COLLECTOR	PIN 1.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.		PIN 1.			
	GATE	PIN 1.	SOURCE DRAIN	PIN 1. 2.		PIN 1. 2.	EMITTER		
2.	ANODE CATHODE & ANODE	PIN 1. 2.	MAIN TERMINAL 1 GATE MAIN TERMINAL 2	PIN 1. 2.	ANODE 1 GATE	PIN 1. 2.		PIN 1. 2.	ANODE 1
2.	ANODE	PIN 1	COLLECTOR BASE EMITTER	PIN 1.	ANODE	PIN 1.	GATE ANODE CATHODE	2.	
PIN 1. 2.		PIN 1. 2.	SOURCE GATE DRAIN	PIN 1. 2.	GATE	PIN 1. 2.	EMITTER COLLECTOR/ANODE CATHODE	PIN 1. 2.	MT 1
	V _{CC}	PIN 1.		PIN 1. 2.	CATHODE	PIN 1. 2.	NOT CONNECTED ANODE CATHODE	PIN 1. 2.	DRAIN
	GATE	PIN 1. 2.		STYLE 33: PIN 1. 2. 3.	RETURN	2.			

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code

A = Assembly Location

L = Wafer Lot Y = Year

W = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor, Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 3 OF 3

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G

NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 NTE65 C4460 SBC846BLT3G 2SA1419T
TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176

FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E

CMXT2207 TR CPH6501-TL-E MCH4021-TL-E TTC012(Q) BULD128DT4 DDTC114EUAQ-7-F NJL0281DG NSS20500UW3TBG

732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H SZT1010T1G 873787E