One Watt Darlington Transistors

NPN Silicon

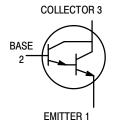
Features

• Pb-Free Packages are Available*

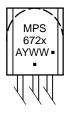
MAXIMUM RATINGS

Rating		Symbol	Value	Unit
	1PS6724 1PS6725	V _{CEO}	40 50	Vdc
1	1PS6724 1PS6725	V_{CBO}	50 60	Vdc
Emitter – Base Voltage		V _{EBO}	12	Vdc
Collector Current – Continuous		I _C	1000	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C		P_D	1.0 8.0	W mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C		P_D	2.5 20	W mW/°C
Operating and Storage Junction Temperature Range		T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	125	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	50	°C/W


Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

MPS672x = Device Code x = 4 or 5

A = Assembly Location

Y = Year

WW = Work Week

= Pb-Free Package
 (Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (Note 1) (I _C = 1.0 mAdc, I _B = 0)	MPS6724 MPS6725	V _{(BR)CES}	40 50	- -	Vdc
Collector – Base Breakdown Voltage ($I_C = 1.0 \mu Adc, I_E = 0$)	MPS6724 MPS6725	V _{(BR)CBO}	50 60	- -	Vdc
Emitter – Base Breakdown Voltage (I _E = 10 µAdc, I _C = 0)		V _{(BR)EBO}	12	-	Vdc
Collector Cutoff Current $(V_{CB} = 30 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 40 \text{ Vdc}, I_E = 0)$	MPS6724 MPS6725	Ісво	_ _	100 100	nAdc
Emitter Cutoff Current (V _{EB} = 10 Vdc, I _C = 0)		I _{EBO}	-	100	nAdc
ON CHARACTERISTICS (Note 1)					
DC Current Gain (I_C = 200 mAdc, V_{CE} = 5.0 Vdc) (I_C = 1000 mAdc, V_{CE} = 5.0 Vdc)		h _{FE}	25,000 4,000	40,000	-
Collector – Emitter Saturation Voltage (I _C = 1000 mAdc, I _B = 2.0 mAdc)		V _{CE(sat)}	-	1.5	Vdc
Base – Emitter On Voltage (I _C = 1000 mAdc, V _{CE} = 5.0 Vdc)		V _{BE(on)}	-	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain – Bandwidth Product (I _C = 200 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)		f _T	100	1000	MHz
Collector–Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{cb}	-	10	pF

^{1.} Pulse Test: Pulse Width \leq 300 μ s; Duty Cycle \leq 2.0%.

TYPICAL CHARACTERISTICS

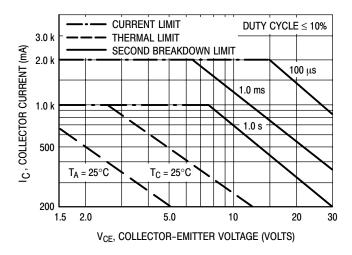


Figure 1. Active Region — Safe Operating Area

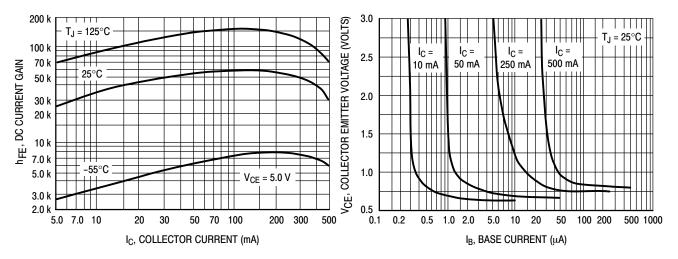


Figure 2. DC Current Gain

Figure 3. Collector Saturation Region

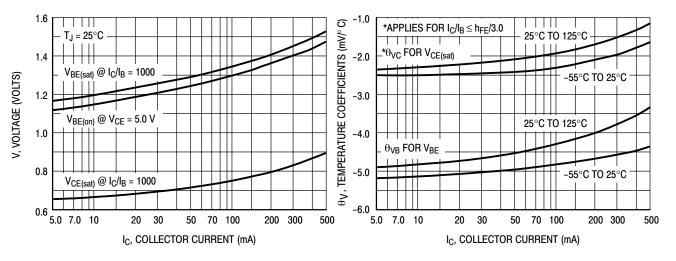


Figure 4. "ON" Voltages

Figure 5. Temperature Coefficients

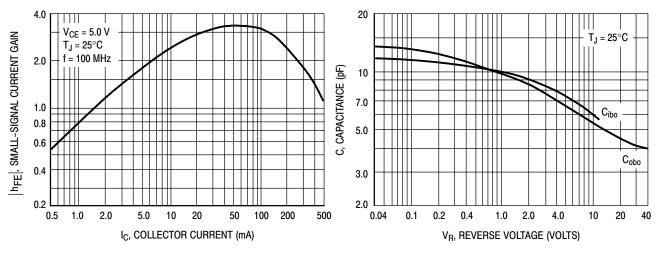
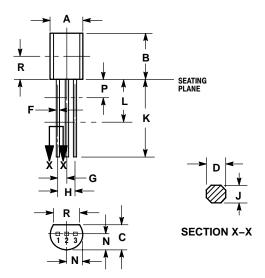


Figure 6. High Frequency Current Gain

Figure 7. Capacitance


ORDERING INFORMATION

Device	Package	Shipping [†]	
MPS6724	TO-92		
MPS6724G	TO-92 (Pb-Free)	5000 Units / Bulk	
MPS6725	TO-92		
MPS6725G	TO-92 (Pb-Free)	5000 Units / Bulk	
MPS6724RLRA	TO-92		
MPS6724RLRAG	TO-92 (Pb-Free)	2000 Units / Tape & Reel	
MPS6725RLRP	TO-92	2000 Units / Tape & Ammo Box	
MPS6725RLRPG	TO-92 (Pb-Free)		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-10 ISSUE AL

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
- 4. DIMENSION F APPLIES BETWEEN P AND L
 DIMENSIONS D AND J APPLY BETWEEN L AND K
 MIMIMUM. LEAD DIMENSION IS UNCONTROLLED
 IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIM	ETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.175	0.205	4.44	5.21	
В	0.290	0.310	7.37	7.87	
С	0.125	0.165	3.18	4.19	
D	0.018	0.021	0.457	0.533	
F	0.016	0.019	0.407	0.482	
G	0.045	0.055	1.15	1.39	
Н	0.095	0.105	2.42	2.66	
J	0.018	0.024	0.46	0.61	
K	0.500		12.70		
L	0.250		6.35		
N	0.080	0.105	2.04	2.66	
P		0.100		2.54	
R	0.135		3.43		

STYLE 1: PIN 1.

IN 1. EMITTER

. BASE

3. COLLECTOR

ON Semiconductor and the registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:

Other Similar products are found below:

1.5SMC82AT3G 74LCX574WM FST3126MX MC78L08ACP MMBTA42 FDD8424H_F085A NTZD3154NT1H KSA1015GRTA
BAT42XV2 007851X 702607H MC33079DG MC34072DR2G MC34151P MC78L08ACDG 74VHC14MX 74VHC541MTCX
FAN3111ESX FDMC86262P FDMD8530 FEBFL7733A_L53U021A FEBFOD8333 MM74HC138MX MMBZ5233B FOD3120SD
FPAB30BH60B FQP2N80 1.5KE16AG MT9V115EBKSTCH-GEVB NB6L295MNGEVB NB7L1008MNGEVB NC7WZ126K8X
NCL30000LED2GEVB NCN9252MUGEVB NCP1075PSRGEVB NCV4274CDT33RKG NCV887100D1R2G NDT2955 1N5339B
NSIC2030JBT3G NV890231MWTXGEVB CAT4101AEVB KA7818ETU S3JB 2SC5569-TD-E FEBFL7734_L55L008A 1V5KE39CA
FNB33060T AMIS30422DBGEVB AMIS3062XGEVK