MPSA13, MPSA14

MPSA14 is a Preferred Device

Darlington Transistors

NPN Silicon

Features

- $\mathrm{Pb}-$ Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CES}}$	30	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	30	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	10	Vdc
Collector Current - Continuous	I_{C}	500	mAdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	625	mW
Derate above 25 ${ }^{\circ} \mathrm{C}$		5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	1.5	W
Derate above 25 ${ }^{\circ} \mathrm{C}$			

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	200	${ }^{\circ} \mathrm{C} / \mathrm{mW}$
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\text {өJC }}$	83.3	${ }^{\circ} \mathrm{C} / \mathrm{mW}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
 download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

EMITTER 1

TO-92
CASE 29 STYLE 1

STRAIGHT LEAD BULK PACK

BENT LEAD TAPE \& REEL AMMO PACK

MARKING DIAGRAM

X	$=3$ or 4
A	$=$ Assembly Location
Y	$=$ Year
WW	$=$ Work Week
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{\text {(BR)CES }}$	30	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{\text {CBO }}$	-	100	nAdc
Emitter Cutoff Current $\left(V_{E B}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{l}_{\text {ebo }}$	-	100	nAdc

ON CHARACTERISTICS (Note 1)

$\begin{aligned} & \text { DC Current Gain } \\ & \left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) \end{aligned}$		$h_{\text {FE }}$	$\begin{array}{r} 5,000 \\ 10,000 \\ 10,000 \\ 20,000 \end{array}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	-
Collector-Emitter Saturation Voltage $\left(I_{C}=100 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{mAdc}\right)$		$\mathrm{V}_{\text {CE(sat) }}$	-	1.5	Vdc
Base-Emitter On Voltage $\left(\mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$		$\mathrm{V}_{\mathrm{BE} \text { (on) }}$	-	2.0	Vdc

SMALL-SIGNAL CHARACTERISTICS

Current-Gain - Bandwidth Product (Note 2) $\left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}, \mathrm{f}=100 \mathrm{MHz}\right)$	f_{T}	125	-	MHz

1. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$; Duty Cycle $\leq 2.0 \%$.
2. $f_{T}=\left|h_{\text {fe }}\right| \bullet f_{\text {test }}$.

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MPSA13	TO-92	5000 Units / Bulk
MPSA13G	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	5000 Units / Bulk
MPSA13RLRA	TO-92	2000 / Tape \& Reel
MPSA13RLRAG	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Tape \& Reel
MPSA13RLRMG	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Ammo Pack
MPSA13RLRPG	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Ammo Pack
MPSA13ZL1G	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Ammo Pack
MPSA14G	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	5000 Units / Bulk
MPSA14RLRAG	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Tape \& Reel
MPSA14RLRPG	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Ammo Pack

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MPSA13, MPSA14

Figure 1. Transistor Noise Model

NOISE CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Figure 2. Noise Voltage

Figure 4. Total Wideband Noise Voltage

Figure 3. Noise Current

Figure 5. Wideband Noise Figure

MPSA13, MPSA14

SMALL-SIGNAL CHARACTERISTICS

Figure 6. Capacitance

Figure 8. DC Current Gain

Figure 10. "On" Voltages

Figure 7. High Frequency Current Gain

Figure 9. Collector Saturation Region

Figure 11. Temperature Coefficients

Figure 12. Thermal Response

Figure 13. Active Region Safe Operating Area

Design Note: Use of Transient Thermal Resistance Data

STRAIGHT LEAD

BENT LEAD

STRAIGHT LEAD

BENT LEAD

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCHES.
3. CONTOUR OF PACKAGE BEYOND DIMENSION RIS UNCONTROLLED.
4. DIMENSION F APPLIES BETWEEN DIMENSIONS P AND L. DIMENSIONS D AND J APPLY BETWEEN DIMENSIONS LAND K MINIMUM. THE LEAD DIMENSIONS ARE UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.175	0.205	4.44	5.21
B	0.290	0.310	7.37	7.87
C	0.125	0.165	3.18	4.19
D	0.018	0.021	0.46	0.53
F	0.016	0.019	0.41	0.48
G	0.045	0.055	1.15	1.39
H	0.095	0.105	2.42	2.66
J	0.018	0.024	0.46	0.61
K	0.500	---	12.70	---
L	0.250	--	6.35	---
N	0.080	0.105	2.04	2.66
P	---	0.100	--	2.54
R	0.135	---	3.43	---
V	0.135	---	3.43	--

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCHES
3. CONTOUR OF PACKAGE BEYOND DIMENSION RIS CONTOUR OF PACKA
4. DIMENSION F APPLIES BETWEEN DIMENSIONS P AND L. DIMENSIONS D AND J APPLY BETWEEN DIMENSIONS LAND K MINIMUM. THE LEAD DIMENSIONS ARE UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIMUM.

DIM	INCHES			MILLIMETERS	
	MIN	MAX	MIN	MAX	
	0.175	0.025	4.44	5.21	
	0.290	0.310	7.37	7.87	
C	0.125	0.165	3.18	4.19	
D	0.018	0.021	0.46	0.53	
G	0.094	0.102	2.40	2.80	
J	0.018	0.024	0.46	0.61	
K	0.500	---	12.70	---	
N	0.080	0.105	2.04	2.66	
P	---	0.100	--	2.54	
R	0.135	---	3.43	---	
\mathbf{V}	0.135	---	3.43	---	

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-92 (TO-226) 1 WATT | PAGE 1 OF 2 |

[^0]
TO-92 (TO-226) 1 WATT

CASE 29-10
ISSUE A

STYLE 1:		STYLE 2: PIN 1.		STYLE 3: PIN 1.		STYLE 4: PIN 1.		STYLE 5: PIN 1.	
PIN 1.	EMITTER	PIN 1.	BASE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	DRAIN
2.	BASE	2.	EMITTER	2.	ANODE	2.	CATHODE	2.	SOURCE
3.	COLLECTOR	3.	COLLECTOR	3.	CATHODE	3.	ANODE	3.	GATE
STYLE 6:		STYLE 7:		STYLE 8:		STYLE 9:		STYLE 10:	
PIN 1.	GATE	PIN 1.	SOURCE	PIN 1.	DRAIN	PIN 1.	BASE 1	PIN 1.	CATHODE
2.	SOURCE \& SUBSTRATE	2.	DRAIN	2.	GATE	2.	EMITTER	2.	GATE
3.	DRAIN	3.	GATE	3.	SOURCE \& SUBSTRATE	3.	BASE 2	3.	ANODE
STYLE 11:		STYLE 12:		STYLE 13:		STYLE 14:		STYLE 15:	
PIN 1.	ANODE	PIN 1.	MAIN TERMINAL 1	PIN 1.	ANODE 1	PIN 1.	EMITTER	PIN 1.	ANODE 1
2.	CATHODE \& ANODE	2.	GATE	2.	GATE	2.	COLLECTOR	2.	CATHODE
3.	CATHODE	3.	MAIN TERMINAL 2	3.	CATHODE 2	3.	BASE	3.	ANODE 2
STYLE 16:		STYLE 17:		STYLE 18:		STYLE 19:		STYLE 20:	
PIN 1.	ANODE	PIN 1.	COLLECTOR	PIN 1.	ANODE	PIN 1.	GATE	PIN 1.	NOT CONNECTED
2.	GATE	2.	BASE	2.	CATHODE	2.	ANODE	2.	CATHODE
3.	CATHODE	3.	EMITTER	3.	NOT CONNECTED	3.	CATHODE	3.	ANODE
STYLE 21:		STYLE 22:		STYLE 23:		STYLE 24 :		STYLE 25:	
PIN 1.	COLLECTOR	PIN 1.	SOURCE	PIN 1.	GATE	PIN 1.	EMITTER	PIN 1.	MT 1
2.	EMITTER	2.	GATE	2.	SOURCE	2.	COLLECTOR/ANODE	2.	GATE
3.	BASE	3.	DRAIN	3.	DRAIN	3.	CATHODE	3.	MT 2
STYLE 26:		STYLE 27:		STYLE 28:		STYLE 29 :		STYLE 30:	
PIN 1.	$V_{C C}$	PIN 1.	MT	PIN 1.	CATHODE	PIN 1.	NOT CONNECTED	PIN 1.	DRAIN
2.	GROUND 2	2.	SUBSTRATE	2.	ANODE	2.	ANODE	2.	GATE
3.	OUTPUT	3.	MT	3.	GATE	3.	CATHODE	3.	SOURCE
STYLE 31:		STYLE 32:		STYLE 33:		STYLE 34:		STYLE 35:	
PIN 1.	GATE	PIN 1.	BASE	PIN 1.	RETURN	PIN 1.	INPUT	PIN 1.	GATE
2.	DRAIN	2.	COLLECTOR	2.	INPUT	2.	GROUND	2.	COLLECTOR
3.	SOURCE	3.	EMITTER	3.	OUTPUT	3.	LOGIC	3.	EMITTER

| DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-92 (TO-226) 1 WATT | PAGE 2 OF 2 |

[^1] rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ON Semiconductor manufacturer:
Other Similar products are found below :
1.5SMC82AT3G 74LCX574WM STK621-068C-E NBXSBA017LN1TAG KAF-3200-ABA-CP-B2 STK621-728S-E AMIS30621AUA

STK531U340A-E STK760-304-E FJAF6810DTU DBD250G STK621-713-E TIP115 LB11847-E NBXHBA017LN1TAG LV8736V-MPB-
H NCP694H12HT1G LA4631VC-XE CAT1025WI-25-G NDF04N60ZG-001 LA78040B-S-E LA6584M-MPB-E NVB60N06T4G
LA6245P-CL-TLM-E STK621-043D-E BTA30H-600CW3G P6SMB100AT3G NCP1129AP100G LV8406T-TLM-E MC100EL13DWG
FW217A-TL-2WX MC33201DG KA78L05AZTA FST3126MX LV4904V-MPB-E STK672-400 SBM30-03-TR-E NCP1398BDR2G
BTA25H-600CW3G LC89057W-VF4A-E CPH6531-TL-E NCP4683DSQ28T1G MC78L08ACP SA5230DR2G NCP694D25HT1G
CAT25020VE-GT3 MC10EP142FAG CAT1832L-G CAT93C56VP2I-GT3 NCP4625DSN50T1G

[^0]: ON Semiconductor and ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

[^1]: ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

