MPSW92

One Watt High Voltage
 Transistor

PNP Silicon

Features

- Pb -Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	-300	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	-300	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	-5.0	Vdc
Collector Current - Continuous	I_{C}	-500	mAdc
Total Device Dissipation $@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	1.0	W
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		P_{D}	2.0
$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$			
\quad Derate above $25^{\circ} \mathrm{C}$			

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction to Case	$\mathrm{R}_{\text {ӨJC }}$	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

MARKING DIAGRAM

MPSW45x = Device Code
$x=45$ A Devices
A = Assembly Location
Y = Year
WW = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (Note 1) $\left(I_{C}=-1.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{\text {(BR) }}$	-300	-	Vdc
Collector-Base Breakdown Voltage $\left(I_{C}=-100 \mu A d c, I_{E}=0\right)$	$\mathrm{V}_{\text {(BR) }{ }^{\text {CBO }}}$	-300	-	Vdc
Emitter-Base Breakdown Voltage $\left(I_{E}=-100 \mu A d c, I_{C}=0\right)$ $\left(\mathrm{I}_{\mathrm{E}}=-100 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{\text {(BR) } \mathrm{EbO}}$	-5.0	-	Vdc
Collector Cutoff Current $\left(V_{C B}=-200 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{\text {CBO }}$	-	-0.25	$\mu \mathrm{Adc}$
Emitter Cutoff Current $\left(V_{E B}=-3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{I}_{\text {ebo }}$	-	-0.1	$\mu \mathrm{Adc}$

ON CHARACTERISTICS (Note 1)

$\begin{aligned} & \text { DC Current Gain } \\ & \text { (} \left.\mathrm{I}_{\mathrm{C}}=-1.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=-10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=-30 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & 25 \\ & 40 \\ & 25 \end{aligned}$		-
Collector-Emitter Saturation Voltage $\left(I_{C}=-20 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-2.0 \mathrm{mAdc}\right)$	$\mathrm{V}_{\text {CE(sat) }}$	-	-0.5	Vdc
Base-Emitter Saturation Voltage ($\mathrm{I}_{\mathrm{C}}=-20 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-2.0 \mathrm{mAdc}$)	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	-	-0.9	Vdc

SMALL-SIGNAL CHARACTERISTICS

Current-Gain - Bandwidth Product $\left(\mathrm{I}_{\mathrm{C}}=-10\right.$ mAdc, $\left.\mathrm{V}_{\mathrm{CE}}=-20 \mathrm{Vdc}, \mathrm{f}=20 \mathrm{MHz}\right)$	f_{T}	50	-	MHz
Collector-Base Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=-20 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{cb}	-	6.0	pF

1. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.

ORDERING INFORMATION

Device	Package	Shipping †
MPSW92	TO-92	5000 Units / Box
MPSW92G	TO-92 (Pb-Free)	5000 Units / Box
MPSW92RLREG	TO-92 (Pb-Free)	$2000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Figure 1. DC Current Gain

Figure 2. Capacitance

Figure 4. "ON" Voltages

STRAIGHT LEAD

BENT LEAD

TO-92 (TO-226) 1 WATT
CASE 29-10 ISSUE A

DATE 08 MAY 2012

NOTES:
. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1994.
CONTOUR OF PACKAGE BEYOND DIMENSION RIS UNCONTROLLED.
4. DIMENSION F APPLIES BETWEEN DIMENSIONS P DIMENSION F APPLIES BETWEEN DIMENSIONS P
AND L. DIMENSIONS D AND J APPLY BETWEEN DIMENSIONS L AND K MINIMUM. THE LEAD DIMENSIONS ARE UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.175	0.20	4.44	5.21
B	0.290	0.310	7.37	7.87
C	0.125	0.165	3.18	4.19
D	0.018	0.021	0.46	0.53
F	0.016	0.019	0.41	0.48
G	0.045	0.055	1.15	1.39
H	0.095	0.105	2.42	2.66
J	0.018	0.024	0.46	0.61
K	0.500	---	12.70	---
L	0.050	--	6.35	---
N	0.080	0.105	2.04	2.66
P	---	0.100	---	2.54
R	0.135	---	3.43	---
V	0.135	---	3.43	---

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
CONTOUR OF PACKAGE BEYOND DIMENSION RIS CONTOUR OF PAC
2. DIMENSION F APPLIES BETWEEN DIMENSIONS P AND L. DIMENSIONS D AND J APPLY BETWEEN DIMENSIONS LAND K MINIMUM. THE LEAD DIMENSIONS ARE UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIMUM.

	INCHES			MILLIMETERS	
DIM	MIN	MAX	MIN	MAX	
A	0.175	0.205	4.44	5.21	
B	0.290	0.310	7.37	7.87	
C	0.125	0.165	3.18	4.19	
D	0.018	0.021	0.46	0.53	
G	0.094	0.102	2.40	2.80	
J	0.018	0.024	0.46	0.61	
K	0.500	--	12.70	---	
N	0.080	0.105	2.04	2.66	
P	---	0.100	---	2.54	
R	0.135	--	3.33	---	
\mathbf{V}	0.135	---	3.43	---	

STYLES ON PAGE 2

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
STATUS:	ON SEMICONDUCTOR STANDARD	
NEW STANDARD:		
DESCRIPTION:	TO-92 (TO-226) 1 WATT	PAGE 1 OF 3

TO-92 (TO-226) 1 WATT

CASE 29-10 ISSUE A

STYLE 1:	
PIN 1.	Emitter
2.	BASE
3.	COLLECTOR
STYLE 6:	
PIN 1.	GATE
2.	SOURCE \& SUBSTRATE
3.	DRAIN
STYLE 11:	
PIN 1.	ANODE
2.	CATHODE \& ANODE
3.	CATHODE
STYLE 16:	
PIN 1.	ANODE
2.	GATE
3.	CATHODE
STYLE 21:	
PIN 1.	COLLECTOR
2.	Emitter
3.	BASE
STYLE 26:	
PIN 1.	$V_{C C}$
2.	GROUND 2
3.	OUTPUT
STYLE 31:	
PIN 1.	GATE
2.	DRAIN
3.	SOURCE

STYLE 2:	
PIN 1.	BASE
2.	EMITTER
3.	COLLECTOR
STYLE 7:	
PIN 1.	SOURCE
2.	DRAIN
3.	GATE
STYLE 12:	
PIN 1.	MAIN TERMINAL 1
2.	GATE
3.	MAIN TERMINAL 2
STYLE 17:	
PIN 1.	COLLECTOR
2.	BASE
3.	EMITTER
STYLE 22:	
PIN 1.	SOURCE
2.	GATE
3.	DRAIN
STYLE 27:	
PIN 1.	MT
2.	SUBSTRATE
3.	MT
STYLE 32:	
PIN 1.	BASE
2.	COLLECTOR
3.	EMITTER

STYLE 3:	
PIN 1.	ANODE
2.	ANODE
3.	CATHODE
STYLE 8:	
PIN 1.	DRAIN
2.	GATE
3.	SOURCE \& SUBSTRATE
STYLE 13:	
PIN 1.	ANODE 1
2.	GATE
3.	CATHODE 2
STYLE 18:	
PIN 1.	ANODE
2.	CATHODE
3.	NOT CONNECTED
STYLE 23:	
PIN 1.	GATE
2.	SOURCE
3.	DRAIN
STYLE 28:	
PIN 1.	CATHODE
2.	ANODE
3.	GATE
STYLE 33:	
PIN 1.	RETURN
2.	INPUT
3.	

STYLE 4:		STYLE 5:	
PIN 1.	CATHODE	PIN 1.	DRAIN
2.	CATHODE	2.	SOURCE
3.	ANODE	3.	GATE
STYLE 9:		STYLE 10:	
PIN 1.	BASE 1	PIN 1.	CATHODE
2.	EMITTER	2.	GATE
3.	BASE 2	3.	ANODE
STYLE 14:		STYLE 15:	
PIN 1.	Emitter	PIN 1.	ANODE 1
2.	COLLECTOR	2.	CATHODE
3.	BASE	3.	ANODE 2
STYLE 19:		STYLE 20:	
PIN 1.	GATE	PIN 1.	NOT CONNECTED
2.	ANODE	2.	CATHODE
3.	CATHODE	3.	ANODE
STYLE 24:		STYLE 25:	
PIN 1.	Emitter	PIN 1.	MT 1
2.	COLLECTOR/ANODE	2.	GATE
3.	CATHODE	3.	MT 2
STYLE 29:		STYLE 30:	
PIN 1.	NOT CONNECTED	PIN 1.	DRAIN
2.	ANODE	2.	GATE
3.	CATHODE	3.	SOURCE
STYLE 34:		STYLE 35:	
PIN 1.	INPUT	PIN 1.	GATE
2.	GROUND	2.	COLLECTOR
	LOGIC	3.	EMITTER

DOCUMENT NUMBER:	98AON52857E
STATUS:	ON SEMICONDUCTOR STANDARD
NEW STANDARD:	
DESCRIPTION:	TO-92 (TO-226) 1 WATT

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

[^0]ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G
NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-
TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176
FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E TTC012(Q) BULD128DT4 DDTC114EUAQ-7-F NJL0281DG NSS20500UW3TBG 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H SZT1010T1G 873787E

[^0]: ON Semiconductor and (ON) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of tis products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

