MUN2238, MMUN2238L, MUN5238, DTC123TE, DTC123TM3, NSBC123TF3

Digital Transistors (BRT) R1 $=2.2 \mathrm{k} \Omega, \mathbf{R 2}=\infty \mathbf{k} \Omega$
 NPN Transistors with Monolithic Bias Resistor Network

This series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a baseemitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.

Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Rating	Symbol	Max	Unit
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	50	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	50	Vdc
Collector Current - Continuous	I_{C}	100	mAdc
Input Forward Voltage	$\mathrm{V}_{\text {IN(fwd) }}$	12	Vdc
Input Reverse Voltage	$\mathrm{V}_{\text {IN(rev) }}$	6	Vdc

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com
PIN CONNECTIONS
PIN 3

MARKING DIAGRAMS

(Note: Microdot may be in either location)
*Date Code orientation may vary depending upon manufacturing location.

See detailed ordering, marking, and shipping information in the package dimensions section on page 2 of this data sheet.

MUN2238, MMUN2238L, MUN5238, DTC123TE, DTC123TM3, NSBC123TF3

Table 1. ORDERING INFORMATION

Device	Part Marking	Package	Shipping †
MUN2238T1G	6 Q	SC-59 (Pb-Free)	$3000 /$ Tape \& Reel
MMUN2238LT1G, SMMUN2238LTIG*	A8R	SOT-23 (Pb-Free)	$3000 /$ Tape \& Reel
MUN5238T1G	AQ	SC-70/SOT-323 (Pb-Free)	$3000 /$ Tape \& Reel
DTC123TET1G	7 R	SC-75 (Pb-Free)	$3000 /$ Tape \& Reel
DTC123TM3T5G	7 C	SOT-732 (Pb-Free)	$8000 /$ Tape \& Reel
NSBC123TF3T5G	T	SOT-1123 (Pb-Free)	$8000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

(1) SC-75 and SC-70/SOT323; Minimum Pad
(2) SC-59; Minimum Pad
(3) SOT-23; Minimum Pad
(4) SOT-1123; $100 \mathrm{~mm}^{2}$, 1 oz . copper trace
(5) SOT-723; Minimum Pad

Figure 1. Derating Curve

MUN2238, MMUN2238L, MUN5238, DTC123TE, DTC123TM3, NSBC123TF3

Table 2. THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit

THERMAL CHARACTERISTICS (SC-59) (MUN2238)

Total Device Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$		P_{D}	$\begin{aligned} & 230 \\ & 338 \\ & 1.8 \\ & 2.7 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$\mathrm{R}_{\text {өJA }}$	$\begin{aligned} & 540 \\ & 370 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction to Lead	(Note 1) (Note 2)	$\mathrm{R}_{\text {өJL }}$	$\begin{aligned} & 264 \\ & 287 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature Range		$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS (SOT-23) (MMUN2238L)

Total Device Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$		P_{D}	$\begin{aligned} & 246 \\ & 400 \\ & 2.0 \\ & 3.2 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$\mathrm{R}_{\text {өJA }}$	$\begin{aligned} & 508 \\ & 311 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction to Lead	(Note 1) (Note 2)	$\mathrm{R}_{\text {өJL }}$	$\begin{aligned} & 174 \\ & 208 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature Range		$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS (SC-70/SOT-323) (MUN5238)

Total Device Dissipation		P_{D}		
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	(Note 1)		202	mW
Derate above $25^{\circ} \mathrm{C}$	(Note 2)		310	mW
	(Note 1)		1.6	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
	(Note 2)		2.5	
Thermal Resistance,	(Note 1)	$\mathrm{R}_{\text {өJA }}$	618	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Ambient	(Note 2)		403	
Thermal Resistance,	(Note 1)	$\mathrm{R}_{\theta \mathrm{JL}}$	280	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Lead	(Note 2)		332	
Junction and Storage Temperature Range		$\mathrm{T}_{\mathrm{J},}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS (SC-75) (DTC123TE)

Total Device Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$		P_{D}	$\begin{aligned} & 200 \\ & 300 \\ & 1.6 \\ & 2.4 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$\mathrm{R}_{\text {өJA }}$	$\begin{aligned} & 600 \\ & 400 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature Range		$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS (SOT-723) (DTC123TM3)

Total Device Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	(Note 1) (Note 2) (Note 1) (Note 2)	P_{D}	$\begin{aligned} & 260 \\ & 600 \\ & 2.0 \\ & 4.8 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$\mathrm{R}_{\text {өJA }}$	$\begin{aligned} & 480 \\ & 205 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature Range		$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

1. FR-4 @ Minimum Pad.
2. FR-4 @ 1.0×1.0 Inch Pad.
3. FR-4 @ $100 \mathrm{~mm}^{2}$, 1 oz. copper traces, still air.
4. FR-4 @ $500 \mathrm{~mm}^{2}, 1 \mathrm{oz}$. copper traces, still air.

MUN2238, MMUN2238L, MUN5238, DTC123TE, DTC123TM3, NSBC123TF3

Table 2. THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit

THERMAL CHARACTERISTICS (SOT-1123) (NSBC123TF3)

Total Device Dissipation		P_{D}		
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	(Note 3)		254	mW
Derate above $25^{\circ} \mathrm{C}$	(Note 4)		297	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
	(Note 3)		2.0	m
	(Note 4)		2.4	
Thermal Resistance,	(Note 3)	$\mathrm{R}_{\theta \mathrm{\theta JA}}$	493	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Ambient	(Note 4)		421	
Thermal Resistance, Junction to Lead	(Note 3)	$\mathrm{R}_{\theta \mathrm{JL}}$	193	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature Range		$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

1. FR-4 @ Minimum Pad.
2. FR-4 @ 1.0×1.0 Inch Pad.
3. FR-4@ $100 \mathrm{~mm}^{2}, 1$ oz. copper traces, still air.
4. FR-4 @ $500 \mathrm{~mm}^{2}, 1 \mathrm{oz}$. copper traces, still air.

Table 3. ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Base Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{\text {cbo }}$	-	-	100	nAdc
$\begin{aligned} & \text { Collector-Emitter Cutoff Current } \\ & \left(\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\right) \end{aligned}$	$I_{\text {ceo }}$	-	-	500	nAdc
Emitter-Base Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{l}_{\text {ebo }}$	-	-	4.0	mAdc
Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{\text {(BR) }} \mathrm{CBO}$	50	-	-	Vdc
Collector-Emitter Breakdown Voltage (Note 5) $\left(\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{\text {(BR)CEO }}$	50	-	-	Vdc

ON CHARACTERISTICS

DC Current Gain (Note 5) $\left(\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}\right)$	$\mathrm{h}_{\text {FE }}$	160	350	-	
Collector-Emitter Saturation Voltage (Note 5) $\left(I_{C}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {CE(sat) }}$	-	-	0.25	Vdc
Input Voltage (off) $\left(\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{i} \text { (off) }}$	-	0.6	0.5	Vdc
Input Voltage (on) $\left(\mathrm{V}_{\mathrm{CE}}=0.3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {i(on) }}$	1.1	0.8	-	Vdc
Output Voltage (on) $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right)$	$\mathrm{V}_{\text {OL }}$	-	-	0.2	Vdc
Output Voltage (off) $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=0.25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right)$	V_{OH}	4.9	-	-	Vdc
Input Resistor	R1	1.5	2.2	2.9	k Ω
Resistor Ratio	$\mathrm{R}_{1} / \mathrm{R}_{2}$	-	-	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
5. Pulsed Condition: Pulse Width $=300 \mathrm{msec}$, Duty Cycle $\leq 2 \%$.

TYPICAL CHARACTERISTICS
MUN2238, MMUN2238L, MUN5238, DTC123TE, DTC123TM3

Figure 2. $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ vs. I_{C}

Figure 4. Output Capacitance

Figure 3. DC Current Gain

Figure 5. Output Current vs. Input Voltage

Figure 6. Input Voltage vs. Output Current

TYPICAL CHARACTERISTICS NSBC123TF3

Figure 7. $\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$ vs. IC_{C}

Figure 9. Output Capacitance

Figure 8. DC Current Gain

Figure 10. Output Current vs. Input Voltage

Figure 11. Input Voltage vs. Output Current

SOT-23 (TO-236)
CASE 318-08
ISSUE AS
DATE 30 JAN 2018

SCALE 4:1

NOTES:
IMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
\mathbf{c}	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
$\mathbf{H E}_{\mathbf{E}}$	2.10	2.40	2.64	0.083	0.094	0.104
T	0°	---	10°	0°	---	10°

GENERIC
MARKING DIAGRAM*

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS

XXX = Specific Device Code
M = Date Code

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

[^0] rights of others.

SCALE 2:1
SC-59
ASE 318D-04
ISSUE H
DATE 28 JUN 2012
SCALE 2.1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.

	MILIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	1.00	1.15	1.30	0.039	0.045	0.051
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.35	0.43	0.50	0.014	0.017	0.020
c	0.09	0.14	0.18	0.003	0.005	0.007
D	2.70	2.90	3.10	0.106	0.114	0.122
E	1.30	1.50	1.70	0.051	0.059	0.067
e	1.70	1.90	2.10	0.067	0.075	0.083
L	0.20	0.40	0.60	0.008	0.016	0.024
HE	2.50	2.80	3.00	0.099	0.110	0.118

GENERIC MARKING DIAGRAM

(*Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.
STYLE 1:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
STYLE 2:
PIN 1. ANODE
2. N.C.
3. CATHODE

STYLE 3:
PIN 1. ANODE 2. ANODE 3. CATHODE
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PIN 1. CATHODE 2. N.C. 3. ANODE

STYLE 5:
PIN 1. CATHODE 2. CATHODE 3. ANODE

STYLE 6:
PIN 1. ANODE
2. CATHODE 3. ANODE/CATHODE

| DOCUMENT NUMBER: | 98ASB42664B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-59 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SCALE 4:1

NDTES:

1. DIMENSIGNING AND TQLERANCING PER ASME Y14.5M, 1982.
2. CDNTRDLLING DIMENSIDN: INCH

DIM	MILLIMETERS			INCHES		
	MIN.	NIM.	MAX.	MIN.	NDM.	MAX.
A	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
AL	0.70 REF			0.028 BSC		
b	0.30	0.35	0.40	0.012	0.014	0.016
c	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.10	2.20	0.071	0.083	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
e	1.20	1.30	1.40	0.047	0.051	0.055
e1	0.65 BSC			0.026 BSC		
L	0.20	0.38	0.56	0.008	0.015	0.022
H_{E}	2.00	2.10	2.40	0.079	0.083	0.095

SC-70 (SOT-323)

CASE 419
ISSUE P

XX = Specific Device Code
M = Date Code

- $\quad=$ Pb-Free Package

GENERIC
MARKING DIAGRAM

pase refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

CANCELLED
STYLE 2:
PIN 1. ANODE
2. N.C.

STYLE 3:
PIN 1. BASE
2. EMITTER

STYLE 4:
PIN 1. CATHODE
2. CATHODE
3. ANODE
STYLE 5:
PIN 1. ANODE
2. ANODE
3. CATHODE

STYLE 8:
PIN 1. GATE
2. SOURCE
3. DRAIN

STYLE 9 :
PIN 1. ANODE
2. CATHODE
3. CATHODE-ANODE

STYLE 10:
PIN 1. CATHODE
2. ANODE
3. ANODE-CATHODE

STYLE 11:
PIN 1. CATHODE
2. CATHODE
3. CATHODE

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1

SC-75/SOT-416
CASE 463-01
ISSUE G
DATE 07 AUG 2015
SCALE 4:1

NOTES:
DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.70	0.80	0.90	0.027	0.031	0.035
A1	0.00	0.05	0.10	0.000	0.002	0.004
b	0.15	0.20	0.30	0.006	0.008	0.012
C	0.10	0.15	0.25	0.004	0.006	0.010
D	1.55	1.60	1.65	0.061	0.063	0.065
E	0.70	0.80	0.90	0.027	0.031	0.035
e	1.00 BSC			0.04 BSC		
L	0.10	0.15	0.20	0.004	0.006	0.008
H $_{\text {F }}$	1.50	1.60	1.70	0.060	0.063	0.067

GENERIC MARKING DIAGRAM*

XX = Specific Device Code
M = Date Code

- $\quad=$ Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " - ", may or may not be present.

SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98ASB15184C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-75/SOT-416 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SCALE 8:1

TOP VIEW

BOTTOM VIEW
SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. ANODE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. GATE
2. EMITTER	2. N/C	2. ANODE	2. CATHODE	2. SOURCE
3. COLLECTOR	3. CATHODE	3. CATHODE	3. ANODE	3. DRAIN

| DOCUMENT NUMBER: | 98AON23134D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-1123, 3-LEAD, 1.0X0.6X0.37, 0.35P | PAGE 1 OF 1 |

[^1] rights of others.

TOP VIEW

SIDE VIEW

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. ANODE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. GATE
2. EMITTER	2. N/C	2. ANODE	2. CATHODE	2. SOURCE
3. COLLECTOR	3. CATHODE	3. CATHODE	3. ANODE	3. DRAIN

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD

FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

DIM	MILLIMETERS				
	MIN	NOM	MAX		
A	0.45	0.50	0.55		
b	0.15	0.21	0.27		
b1	0.25	0.31	0.37		
C	0.07	0.12	0.17		
D	1.15	1.20	1.25		
E	0.75	0.80	0.85		
e	0.40 BSC				
H E	1.15	1.20			1.25
L	0.29 REF				
L2	0.15	0.20			0.25

GENERIC MARKING DIAGRAM*

XX	$=$ Specific Device Code
M	$=$ Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

| DOCUMENT NUMBER: | 98AON12989D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-723 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - Pre-Biased category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
RN1607(TE85L,F) DTA124GKAT146 DTA144WETL DTA144WKAT146 DTC113EET1G DTC115TKAT146 DTC144ECA-TP DTC144VUAT106 MUN5241T1G BCR158WH6327XTSA1 NSBA114TDP6T5G NSBA143ZF3T5G NSBC114YF3T5G NSBC123TF3T5G SMUN5235T1G SMUN5330DW1T1G SSVMUN5312DW1T2G RN1303(TE85L,F) RN4605(TE85L,F) TTEPROTOTYPE79 DDTC114EUAQ-7-F EMH15T2R SMUN2214T3G NSBC114TF3T5G NSBC143ZPDP6T5G NSVMUN5113DW1T3G SMUN5230DW1T1G SMUN5133T1G SMUN2214T1G DTC114EUA-TP NSBA144EF3T5G NSVDTA114EET1G 2SC2223-T1B-A 2SC3912-TB-E SMUN5237DW1T1G SMUN5213DW1T1G SMUN5114DW1T1G SMUN2111T1G NSVDTC144EM3T5G DTC124ECATP DTC123TM3T5G DTA114ECA-TP DTA113EM3T5G DCX115EK-7-F DTC113EM3T5G NSVMUN5135DW1T1G NSVDTC143ZM3T5G SMUN5335DW1T2G SMUN5216DW1T1G NSVMUN5312DW1T2G

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

[^1]: ON Semiconductor and ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

