32-tap Digital Potentiometer (POT)

Description

The N57M5114 is a single digital POT designed as an electronic replacement for mechanical potentiometers and trim pots. Ideal for automated adjustments on high volume production lines, they are also well suited for applications where equipment requiring periodic adjustment is either difficult to access or located in a hazardous or remote environment.

The N57M5114 contains a 32-tap series resistor array connected between two terminals R_H and R_L . An up/down counter and decoder that are controlled by three input pins, determines which tap is connected to the wiper, R_W . The wiper setting, stored in nonvolatile memory, is not lost when the device is powered down and is automatically reinstated when power is returned. The wiper can be adjusted to test new system values without affecting the stored setting. Wiper-control of the N57M5114 is accomplished with three input control pins, \overline{CS} , U/\overline{D}, and \overline{INC}. The \overline{INC} input increments the wiper in the direction which is determined by the logic state of the U/\overline{D} input. The \overline{CS} input is used to select the device and also store the wiper position prior to power down.

The digital POT can be used as a three-terminal resistive divider or as a two-terminal variable resistor. Digital POTs bring variability and programmability to a wide variety of applications including control, parameter adjustments, and signal processing.

Features

- 32-position Linear Taper Potentiometer
- Non-volatile EEPROM Wiper Storage
- Low Standby Current
- Single Supply Operation: 2.5 V 6.0 V
- Increment Up/Down Serial Interface
- Resistance Values: $10 \text{ k}\Omega$. $50 \text{ k}\Omega$ and $100 \text{ k}\Omega$
- Available in SOIC, TSSOP, MSOP and Space Saving 2 × 3 mm TDFN Packages
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

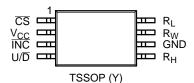
Applications

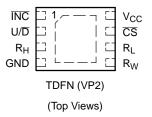
- Automated Product Calibration
- Remote Control Adjustments
- Offset, Gain and Zero Control
- Tamper-proof Calibrations
- Contrast, Brightness and Volume Controls
- Motor Controls and Feedback Systems
- Programmable Analog Functions

ON Semiconductor®

www.onsemi.com

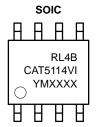
MSOP-8 Z SUFFIX CASE 846AD


TSSOP-8 Y SUFFIX CASE 948AL



TDFN-8 VP2 SUFFIX CASE 511AK

PIN CONFIGURATIONS



ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

DEVICE MARKING INFORMATION

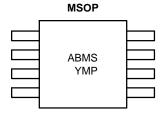
R = Resistance

 $2 = 10 \text{ k}\Omega$

 $4 = 50 \text{ k}\Omega$

 $5 = 100 \text{ k}\Omega$

L = Assembly Location


4 = Lead Finish - NiPdAu

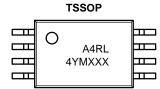
I = Industrial Temp Range

Y = Production Year (Last Digit)

M = Production Month (1-9, O, N, D)

XXXX = Last Four Digits of Assembly Lot Number

ABMS = $10 \text{ k}\Omega$


 $ABMT = 50 \text{ k}\Omega$

 $ABTH = 100 \text{ k}\Omega$

Y = Production Year (Last Digit)

M = Production Month (1–9, O, N, D)

P = Product Revision

A4 = Device Code

R = Resistance

 $2 = 10 \text{ k}\Omega$

 $4 = 50 \text{ k}\Omega$ $5 = 100 \text{ k}\Omega$

L = Assembly Location

4 = Lead Finish - NiPdAu

Y = Production Year (last digit)

M = Production Month (1–9, O, N, D)

XXX = Last Three Digits of Assembly

Lot Number

TDFN

EFL XXX YM EF = 10 kΩHF = 50 kΩ

GW = 100 $k\Omega$ XXX = Last Three Digits of Assembly Lot Number

Y = Production Year (Last Digit)

M = Production Month (1–9, O, N, D)

Functional Diagram

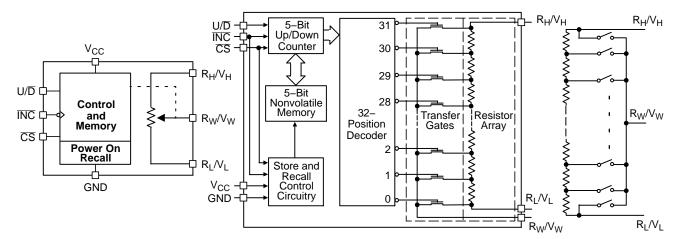


Figure 1. General

Figure 2. Detailed

Figure 3. Electronic Potentiometer Implementation

Table 1. PIN DESCRIPTIONS

Name	Function	
INC	Increment Control	
U/D	Up/Down Control	
R _H	Potentiometer High Terminal	
GND	Ground	
R _W	Wiper Terminal	
R _L	Potentiometer Low Terminal	
CS	Chip Select	
V _{CC}	Supply Voltage	

Pin Function

INC: Increment Control Input

The \overline{INC} input moves the wiper in the up or down direction determined by the condition of the U/\overline{D} input.

U/**D**: Up/Down Control Input

The $U\overline{D}$ input controls the direction of the wiper movement. When in a high state and \overline{CS} is low, any high-to-low transition on \overline{INC} will cause the wiper to move one increment toward the R_H terminal. When in a low state and \overline{CS} is low, any high-to-low transition on \overline{INC} will cause the wiper to move one increment towards the R_L terminal.

R_H: High End Potentiometer Terminal

 $R_{\rm H}$ is the high end terminal of the potentiometer. It is not required that this terminal be connected to a potential greater than the $R_{\rm L}$ terminal. Voltage applied to the $R_{\rm H}$ terminal cannot exceed the supply voltage, $V_{\rm CC}$ or go below ground, GND.

Rw: Wiper Potentiometer Terminal

 R_W is the wiper terminal of the potentiometer. Its position on the resistor array is controlled by the control inputs, \overline{INC} , U/\overline{D} and \overline{CS} . Voltage applied to the R_W terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND.

RL: Low End Potentiometer Terminal

 R_{L} is the low end terminal of the potentiometer. It is not required that this terminal be connected to a potential less

than the R_H terminal. Voltage applied to the R_L terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND. R_L and R_H are electrically interchangeable.

CS: Chip Select

The chip select input is used to activate the control input of the N57M5114 and is active low. When in a high state, activity on the $\overline{\text{INC}}$ and U/\overline{D} inputs will not affect or change the position of the wiper.

Device Operation

The N57M5114 operates like a digitally controlled potentiometer with R_H and R_L equivalent to the high and low terminals and R_W equivalent to the mechanical potentiometer's wiper. There are 32 available tap positions including the resistor end points, R_H and R_L . There are 31 resistor elements connected in series between the R_H and R_L terminals. The wiper terminal is connected to one of the 32 taps and controlled by three inputs, \overline{INC} , U/\overline{D} and \overline{CS} . These inputs control a seven-bit up/down counter whose output is decoded to select the wiper position. The selected wiper position can be stored in nonvolatile memory using the \overline{INC} and \overline{CS} inputs.

With $\overline{\text{CS}}$ set LOW the N57M5114 is selected and will respond to the U/ $\overline{\text{D}}$ and $\overline{\text{INC}}$ inputs. HIGH to LOW transitions on $\overline{\text{INC}}$ will increment or decrement the wiper (depending on the state of the U/ $\overline{\text{D}}$ input and seven-bit counter). The wiper, when at either fixed terminal, acts like its mechanical equivalent and does not move beyond the last position. The value of the counter is stored in nonvolatile memory whenever $\overline{\text{CS}}$ transitions HIGH while the $\overline{\text{INC}}$ input is also HIGH. When the N57M5114 is powered-down, the last stored wiper counter position is maintained in the nonvolatile memory. When power is restored, the contents of the memory are recalled and the counter is set to the value stored.

With INC set low, the N57M5114 may be de-selected and powered down without storing the current wiper position in nonvolatile memory. This allows the system to always power up to a preset value stored in nonvolatile memory.

Table 2. OPERATION MODES

INC	CS	U/D	Operation
High to Low	Low	High	Wiper toward H
High to Low	Low	Low	Wiper toward L
High	Low to High	Х	Store Wiper Position
Low	Low to High	Х	No Store, Return to Standby
Х	High	Х	Standby

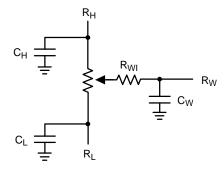


Figure 4. Potentiometer Equivalent Circuit

Table 3. ABSOLUTE MAXIMUM RATINGS

Parameters	Ratings	Units
Supply Voltage V _{CC} to GND	-0.5 to +7	V
Inputs CS to GND	-0.5 to V _{CC} +0.5	V
INC to GND	-0.5 to V _{CC} +0.5	V
U/D̄ to GND	-0.5 to V _{CC} +0.5	V
H to GND	-0.5 to V _{CC} +0.5	V
L to GND	-0.5 to V _{CC} +0.5	V
W to GND	-0.5 to V _{CC} +0.5	V
Operating Ambient Temperature Industrial ('I' suffix)	-40 to +85	°C
Junction Temperature	+150	°C
Storage Temperature	-65 to 150	°C
Lead Soldering (10 s max)	+300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. RELIABILITY CHARACTERISTICS

Symbol	Parameter	Test Method	Min	Тур	Max	Units
V _{ZAP} (Note 1)	ESD Susceptibility	MIL-STD-883, Test Method 3015	2000			V
I _{LTH} (Notes 1, 2)	Latch-up	JEDEC Standard 17	100			mA
T _{DR}	Data Retention	MIL-STD-883, Test Method 1008	100			Years
N _{END}	Endurance	MIL-STD-883, Test Method 1033	1,000,000			Stores

- 1. This parameter is tested initially and after a design or process change that affects the parameter.
- 2. Latch-up protection is provided for stresses up to 100 mA on address and data pins from -1 V to V_{CC} + 1 V.

Table 5. DC ELECTRICAL CHARACTERISTICS ($V_{CC} = +2.5 \text{ V}$ to +6 V unless otherwise specified)

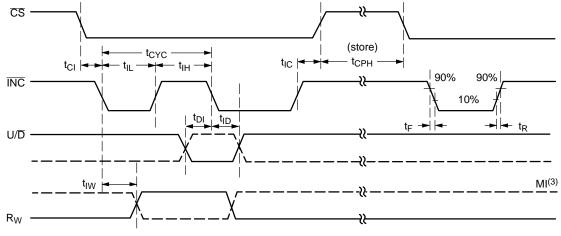
Symbol	Parameter	Conditions	Min	Тур	Max	Units
POWER SUPPL	Y					
V _{CC}	Operating Voltage Range		2.5	-	6.0	V
I _{CC1}	Supply Current (Increment)	$V_{CC} = 6 \text{ V, f} = 1 \text{ MHz, I}_{W} = 0$	_	-	100	μΑ
		V _{CC} = 6 V, f = 250 kHz, I _W = 0	-	-	50	μΑ
I _{CC2}	Supply Current (Write)	Programming, V _{CC} = 6 V	_	-	1000	μΑ
		V _{CC} = 3 V	_	-	500	μΑ
I _{SB1} (Note 4)	Supply Current (Standby)	$\frac{\overline{CS} = V_{CC} - 0.3 \text{ V}}{U/\overline{D}, \overline{INC} = V_{CC} - 0.3 \text{ V or GND}}$	-	-	1	μΑ
LOGIC INPUTS						
I _{IH}	Input Leakage Current	$V_{IN} = V_{CC}$	_	-	10	μΑ
I _{IL}	Input Leakage Current	V _{IN} = 0 V	-	-	-10	μΑ
V_{IH2}	CMOS High Level Input Voltage	2.5 V ≤ V _{CC} ≤ 6 V	V _{CC} x 0.7	-	V _{CC} + 0.3	V
V_{IL2}	CMOS Low Level Input Voltage		-0.3	-	V _{CC} x 0.2	V
POTENTIOMET	ER CHARACTERISTICS					
R _{POT}	Potentiometer Resistance	–10 Device		10		kΩ
		-50 Device		50		
		-00 Device		100		
	Pot. Resistance Tolerance				±20	%
V_{RH}	Voltage on R _H pin		0		V _{CC}	V
V_{RL}	Voltage on R _L pin		0		V _{CC}	V
	Resolution			3.2		%
INL	Integral Linearity Error				0.5	LSB
DNL	Differential Linearity Error				0.25	LSB
R_{WI}	Wiper Resistance	$V_{CC} = 5 \text{ V}, I_{W} = 1 \text{ mA}$		70	200	Ω
		V _{CC} = 2.5 V, I _W = 1 mA		150	400	Ω
I _W	Wiper Current		-4.4		4.4	mA
TC _{RPOT}	TC of Pot Resistance			300		ppm/°C
TC _{RATIO}	Ratiometric TC				20	ppm/°C
V _N	Noise	100 kHz / 1 kHz		8/24		nV/√Hz
C _H /C _L /C _W	Potentiometer Capacitances			8/8/25		pF
fc	Frequency Response	Passive Attenuator, 10 kΩ		1.7		MHz

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. This parameter is tested initially and after a design or process change that affects the parameter.

4. Latch—up protection is provided for stresses up to 100 mA on address and data pins from –1 V to V_{CC} + 1 V.

^{5.} I_W = source or sink.
6. These parameters are periodically sampled and are not 100% tested.


Table 6. AC TEST CONDITIONS

V _{CC} Range	$2.5~V \le V_{CC} \le 6~V$
Input Pulse Levels	0.2 x V _{CC} to 0.7 x V _{CC}
Input Rise and Fall Times	10 ns
Input Reference Levels	0.5 x V _{CC}

 $\textbf{Table 7. AC OPERATING CHARACTERISTICS} \ (V_{CC} = +2.5 \ V \ \text{to } +6.0 \ V, \ V_{H} = V_{CC}, \ V_{L} = 0 \ V, \ unless \ otherwise \ specified)$

	(00		. ,		
Symbol	Parameter	Min	Typ (Note 7)	Max	Units
t _{Cl}	CS to INC Setup	100	-	-	ns
t _{DI}	U/D to INC Setup	50	-	-	ns
t _{ID}	U/D to INC Hold	100	-	-	ns
t _{IL}	ĪNC LOW Period	250	-	-	ns
t _{IH}	INC HIGH Period	250	-	-	ns
t _{IC}	INC Inactive to CS Inactive	1	-	-	μS
t _{CPH}	CS Deselect Time (NO STORE)	100	-	-	ns
t _{CPH}	CS Deselect Time (STORE)	10	-	_	ms
t _{IW}	ĪNC to V _{OUT} Change	-	1	5	μs
t _{CYC}	ĪNC Cycle Time	1	-	-	μs
t _R , t _F (Note 8)	INC Input Rise and Fall Time	-	-	500	μs
t _{PU} (Note 8)	Power-up to Wiper Stable	-	_	1	ms
t _{WR}	Store Cycle	-	5	10	ms

- 7. Typical values are for T_A = 25°C and nominal supply voltage.
 8. This parameter is periodically sampled and not 100% tested.
- 9. MI in the A.C. Timing diagram refers to the minimum incremental change in the W output due to a change in the wiper position.

APPLICATIONS INFORMATION

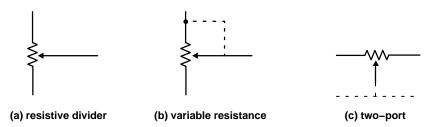


Figure 6. Potentiometer Configuration

Applications

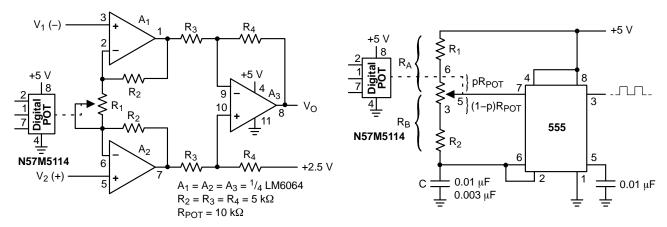


Figure 7. Programmable Instrumentation Amplifier

Figure 8. Programmable Sq. Wave Oscillator (555)

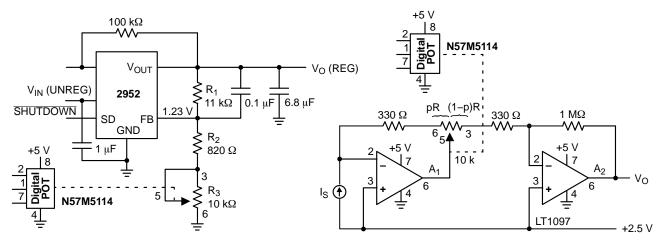


Figure 9. Programmable Voltage Regulator

Figure 10. Programmable I to V Convertor

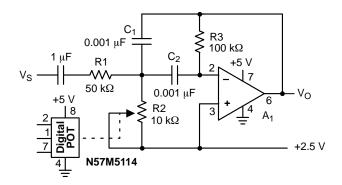


Figure 11. Programmable Bandpass Filter

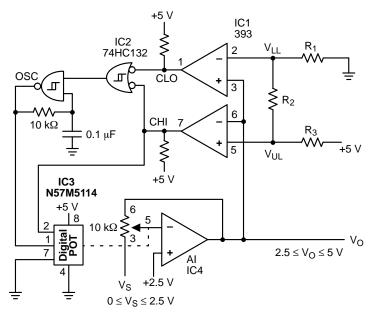
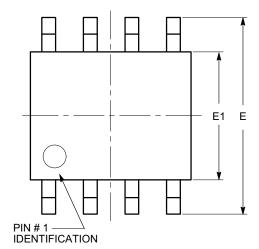


Figure 12. Automatic Gain Control

Table 8. ORDERING INFORMATION

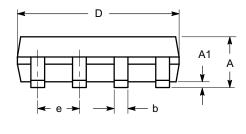
Orderable Part Numbers	Resistance Values (kΩ)	Package-Pin	Lead Finish	Shipping [†]
N57M5114WD10TG	10			
N57M5114WD50TG	50	SOIC-8	NiPdAu	100 Units / Rail
N57M5114WD00TG	100			
N57M5114VP2D10TG	10			
N57M5114VP2D50TG	50	TDFN-8 2 x 3 mm	NiPdAu	3000 / Tape & Reel
N57M5114VP2D00TG	100			
N57M5114YD10TG	10			
N57M5114YD50TG	50	TSSOP-8	NiPdAu	3000 / Tape & Reel
N57M5114YD00TG	100			
N57M5114ZD10TG	10			
N57M5114ZD50TG	50	MSOP-8	NiPdAu	96 Units / Rail
N57M5114ZD00TG	100			

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

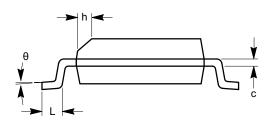

10. All packages are RoHS-compliant (Pb-Free, Halogen-Free).

11. The standard lead finish is NiPdAu.

12. For additional package and temperature options, please contact your nearest ON Semiconductor Sales office.


PACKAGE DIMENSIONS

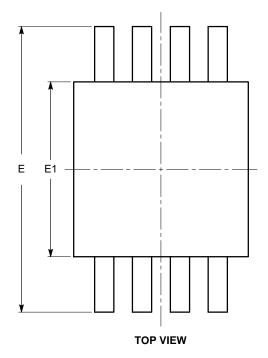
SOIC 8, 150 mils CASE 751BD ISSUE O



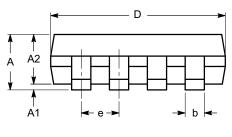
SYMBOL	MIN	NOM	MAX
А	1.35		1.75
A1	0.10		0.25
b	0.33		0.51
С	0.19		0.25
D	4.80		5.00
E	5.80		6.20
E1	3.80		4.00
е		1.27 BSC	
h	0.25		0.50
L	0.40		1.27
θ	0°		8°

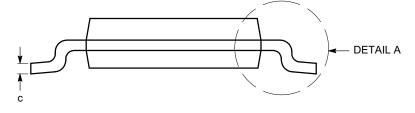
TOP VIEW

SIDE VIEW

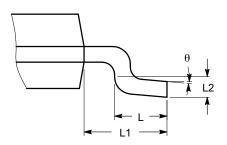


END VIEW


- (1) All dimensions are in millimeters. Angles in degrees.(2) Complies with JEDEC MS-012.

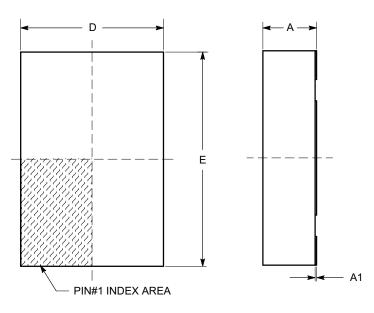

PACKAGE DIMENSIONS

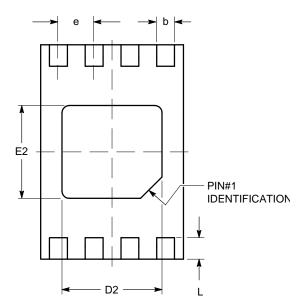
MSOP 8, 3x3 CASE 846AD ISSUE O


SYMBOL	MIN	NOM	MAX	
А			1.10	
A1	0.05	0.10	0.15	
A2	0.75	0.85	0.95	
b	0.22		0.38	
С	0.13		0.23	
D	2.90	3.00	3.10	
E	4.80	4.90	5.00	
E1	2.90	3.00	3.10	
е		0.65 BSC		
L	0.40	0.60	0.80	
L1	0.95 REF			
L2	0.25 BSC			
θ	0°		6°	

SIDE VIEW

END VIEW

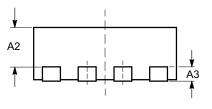

Notes:


- (1) All dimensions are in millimeters. Angles in degrees.(2) Complies with JEDEC MO-187.

DETAIL A

PACKAGE DIMENSIONS

TDFN8, 2x3 CASE 511AK ISSUE A

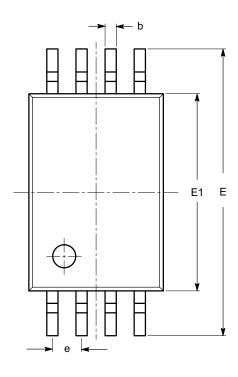


TOP VIEW

SIDE VIEW

BOTTOM VIEW

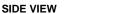
SYMBOL	MIN	NOM	MAX	
А	0.70	0.75	0.80	
A1	0.00	0.02	0.05	
A2	0.45	0.55	0.65	
A3		0.20 REF		
b	0.20	0.25	0.30	
D	1.90	2.00	2.10	
D2	1.30	1.40	1.50	
E	2.90	3.00	3.10	
E2	1.20	1.30	1.40	
е	0.50 TYP			
L	0.20	0.30	0.40	

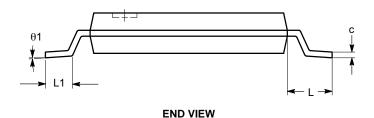

FRONT VIEW

Notes:

- (1) All dimensions are in millimeters.(2) Complies with JEDEC MO-229.


PACKAGE DIMENSIONS





SYMBOL	MIN	NOM	MAX	
Α			1.20	
A1	0.05		0.15	
A2	0.80	0.90	1.05	
b	0.19		0.30	
С	0.09		0.20	
D	2.90	3.00	3.10	
Е	6.30	6.40	6.50	
E1	4.30	4.40	4.50	
е		0.65 BSC		
L	1.00 REF			
L1	0.50	0.60	0.75	
θ	0°		8°	

Notes:

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC MO-153.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnif

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Digital Potentiometer ICs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

604-00010 CAT5111VI-10-GT3 CAT5110TBI-10GT3 CAT5111LI-10-G X9C1038 CAT5110TBI-50GT3 CAT5112ZI-50-GT3

CAT5111YI-10-GT3 MCP4251-503EML MCP4351-502E/ML MCP4641-502E/ST MCP4651T-503E/ML MCP4162-103E/SN MCP4451
103E/ML MCP4532T-103E/MF MCP4631-503E/ST MCP4661-502E/ST CAT5113VI-00-GT3 MCP4641T-502E/ML MCP4021-103E/MS

DS1855E-010+ MAX5160LEUA+T MCP4231T-503E/ML MCP4142-104E/MF AD5260BRUZ200-RL7 CAT5113LI-10-G CAT5113LI-50
G CAT5114LI-00-G AD5116BCPZ10-500R7 AD5116BCPZ5-500R7 AD5116BCPZ80-500R7 AD5122ABCPZ100-RL7

AD5122ABRUZ100 AD5122BCPZ10-RL7 AD5142ABRUZ100 AD5143BCPZ10-RL7 AD5253BRUZ10 AD5253BRUZ50

AD5254BRUZ1-RL7 AD5161BRMZ50-RL7 AD5162BRMZ100 AD5170BRMZ2.5-RL7 AD5162BRMZ10-RL7 AD5162WBRMZ100-RL7