2.5 V/3.3 V Any Level Positive Input to -2.5 V/-3.3 V LVNECL Output Translator

NB100LVEP91

Description

The NB100LVEP91 is a triple any level positive input to NECL output translator. The device accepts LVPECL, LVTTL, LVCMOS, HSTL, CML or LVDS signals, and translates them to differential LVNECL output signals ($-2.5 \mathrm{~V} /-3.3 \mathrm{~V}$).

To accomplish the level translation the LVEP91 requires three power rails. The V_{CC} pins should be connected to the positive power supply, and the V_{EE} pin should be connected to the negative power supply. The GND pins are connected to the system ground plane. Both V_{EE} and V_{CC} should be bypassed to ground via $0.01 \mu \mathrm{~F}$ capacitors.

Under open input conditions, the $\overline{\mathrm{D}}$ input will be biased at $\mathrm{V}_{\mathrm{CC}} / 2$ and the D input will be pulled to GND. These conditions will force the Q outputs to a low state, and Q outputs to a high state, which will ensure stability.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a $0.01 \mu \mathrm{~F}$ capacitor and limit current sourcing or sinking to 0.5 mA . When not used, V_{BB} should be left open.

Features

- Maximum Input Clock Frequency $>2.0 \mathrm{GHz}$ Typical
- Maximum Input Data Rate $>2.0 \mathrm{~Gb} / \mathrm{s}$ Typical
- 500 ps Typical Propagation Delay
- Operating Range:
- $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to $3.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.375 \mathrm{~V}$ to $-3.8 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V}$
- Q Output will Default LOW with Inputs Open or at GND
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

SOIC-20 WB DW SUFFIX CASE 751D-05

MARKING DIAGRAMS*

$$
\begin{array}{ll}
\text { A } & =\text { Assembly Location } \\
\text { WL, L } & =\text { Wafer Lot } \\
\text { YY, Y } & =\text { Year } \\
\text { WW, W } & =\text { Work Week } \\
\text { G or } & =\text { Pb-Free Package }
\end{array}
$$

(Note: Microdot may be in either location)
*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

Device	Package	Shipping †
NB100LVEP91DWG	SOIC-20 WB (Pb-Free)	38 Units/Tube
NB100LVEP91DWR2G	SOIC-20 WB (Pb-Free)	1000/Tape \& Reel
NB100LVEP91MNG	QFN-24 (Pb-Free)	92 Units/Tube

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NB100LVEP91

Figure 1. Logic Diagram

Table 1. PIN DESCRIPTION

Pin		Name	1/0	Default State	Description
SOIC	QFN				
1,20	3, 4, 12	V_{Cc}	-	-	Positive Supply Voltage. All V_{CC} Pins must be Externally Connected to Power Supply to Guarantee Proper Operation.
10	15, 16	V_{EE}	-	-	Negative Supply Voltage. All $\mathrm{V}_{\text {EE }}$ Pins must be Externally Connected to Power Supply to Guarantee Proper Operation.
14, 17	$\begin{aligned} & 19,20, \\ & 23,24 \end{aligned}$	GND	-	-	Ground.
4, 7	7, 11	V_{BB}	-	-	ECL Reference Voltage Output
2, 5, 8	5, 8, 13	D[0:2]	LVPECL, LVDS, LVTTL, LVCMOS, CML, HSTL Input	Low	Non-inverted Differential Inputs [0:2]. Internal $75 \mathrm{k} \Omega$ to GND.
3, 6, 9	6, 9, 14	D[0:2]	LVPECL, LVDS, LVTTL,LVCMOS, CML, HSTL Input	High	Inverted Differential Inputs [0:2]. Internal $75 \mathrm{k} \Omega$ to GND and $75 \mathrm{k} \Omega$ to V_{Cc}. When Inputs are Left Open They Default to (V_{CC} - GND) / 2.
19,16,13	2, 22, 18	Q[0:2]	LVNECL Output	-	Non-inverted Differential Outputs [0:2]. Typically Terminated with 50Ω to $\mathrm{V}_{\mathrm{TT}}=\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$
18,15,12	1, 21, 17	Q[0:2]	LVNECL Output	-	Inverted Differential Outputs [0:2]. Typically Terminated with 50Ω to $\mathrm{V}_{\mathrm{TT}}=\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$
11	10	NC	-	-	No Connect. The NC Pin is NOT Electrically Connected to the Die and may Safely be Connected to Any Voltage from V_{EE} to V_{CC}.
N/A	-	EP	-		Exposed Pad. (Note 1)

1. The thermally conductive exposed pad on the package bottom (see case drawing) must be attached to a heat sinking conduit and may only be electrically connected to V_{EE} (not GND).

NB100LVEP91

Figure 2. SOIC-20 WB Lead Pinout (Top View)*
*All $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$ and GND pins must be externally connected to a power supply.

Figure 3. QFN-24 Lead Pinout (Top View)*
*All $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$ and GND pins must be externally connected to a power supply. The thermally conductive exposed pad on the package bottom (see case drawing) must be attached to a sufficient heat-sinking conduit and may only be electronically connected to V_{EE} (not GND).

Table 2. ATTRIBUTES

Characteristics	Value		
Internal Input Pulldown Resistor (R1)	$75 \mathrm{k} \Omega$		
Internal Input Pullup Resistor (R2)	$75 \mathrm{k} \Omega$		
$\begin{array}{l}\text { ESD Protection } \\ \text { Human Body Model } \\ \text { Machine Model } \\ \text { Charged Device Model }\end{array}$			
Moisture Sensitivity (Note 1)	$>2 \mathrm{kV}$		
$\begin{array}{l\|l\|}\text { SOIC-20 WB } \\ \text { QFN-24 }\end{array}$	$>150 \mathrm{~V}$		
$>2 \mathrm{kV}$		$]$	Pb-Free Pkg
:---			
Flammability Rating			
Oxygen Index: 28 to 34			

1. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{CC}	Positive Power Supply	GND $=0 \mathrm{~V}$		3.8 to 0	V
V_{EE}	Negative Power Supply	GND $=0 \mathrm{~V}$		-3.8 to 0	V
V_{1}	Positive Input Voltage	GND $=0 \mathrm{~V}$	$\mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$	3.8 to 0	V
V_{OP}	Operating Voltage	GND = 0 V	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	7.6 to 0	V
$\mathrm{I}_{\text {out }}$	Output Current	Continuous Surge		$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
I_{BB}	PECL $\mathrm{V}_{\text {BB }}$ Sink/Source			± 0.5	mA
$\mathrm{T}_{\text {A }}$	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient) JESD 51-3 (1S-Single Layer Test Board)	$\begin{array}{\|l\|} \hline 0 \text { lfpm } \\ 500 \mathrm{lfpm} \end{array}$	SOIC-20 WB	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient) JESD 51-6 (2S2P Multilayer Test Board) with Filled Thermal Vias	$\begin{aligned} & 0 \text { Ifpm } \\ & 500 \mathrm{lfpm} \end{aligned}$	QFN-24	$\begin{aligned} & 37 \\ & 32 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{Jc}	Thermal Resistance (Junction-to-Case)	Standard Board	$\begin{aligned} & \hline \text { SOIC-20 WB } \\ & \text { QFN-24 } \end{aligned}$	$\begin{gathered} 30 \text { to } 35 \\ 11 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder (Pb-Free)			225	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. DC CHARACTERISTICS POSITIVE INPUTS (VCC $=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.375$ to -3.8 V , $\mathrm{GND}=0 \mathrm{~V}$ (Note 1))

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
I_{CC}	Positive Power Supply Current	10	14	20	10	14	20	10	14	20	mA
V_{IH}	Input HIGH Voltage (Single-Ended)	1335		V_{CC}	1335		V_{CC}	1335		V_{CC}	mV
V_{IL}	Input LOW Voltage (Single-Ended)	GND		875	GND		875	GND		875	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 2)	0		2.5	0		2.5	0		2.5	V
$\mathrm{I}_{\mathbf{H}}$	Input HIGH Current (@ V ${ }_{\text {IH }}$)			150			150			150	$\mu \mathrm{A}$
IIL	$\begin{aligned} & \text { Input LOW Current (@ VIL) } \\ & \frac{D}{D} \end{aligned}$	$\begin{gathered} 0.5 \\ -150 \end{gathered}$			$\begin{gathered} 0.5 \\ -150 \end{gathered}$			$\begin{gathered} 0.5 \\ -150 \end{gathered}$			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

1. Input parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}} . \mathrm{V}_{\mathrm{CC}}$ can vary $+1.3 \mathrm{~V} /-0.125 \mathrm{~V}$.
2. $\mathrm{V}_{\mathrm{IHCMR}}$ min varies $1: 1$ with $G N D$. $\mathrm{V}_{\mathrm{IHCMR}}$ max varies $1: 1$ with V_{CC}.

NB100LVEP91

Table 5. DC CHARACTERISTICS POSITIVE INPUT ($\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$; $\mathrm{V}_{\mathrm{EE}}=-2.375 \mathrm{~V}$ to -3.8 V ; GND $=0 \mathrm{~V}$ (Note 1))

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$I_{\text {cc }}$	Positive Power Supply Current	10	16	24	10	16	24	10	16	24	mA
V_{IH}	Input HIGH Voltage (Single-Ended)	2135		V_{CC}	2135		V_{CC}	2135		$\mathrm{V}_{\text {CC }}$	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single-Ended)	GND		1675	GND		1675	GND		1675	mV
V_{BB}	PECL Output Voltage Reference	1775	1875	1975	1775	1875	1975	1775	1875	1975	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 2)	0		3.3	0		3.3	0		3.3	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current (@ V ${ }_{\text {IH }}$)			150			150			150	$\mu \mathrm{A}$
IIL	$\begin{aligned} & \text { Input LOW Current (@ VIL) } \\ & \frac{D}{D} \end{aligned}$	$\begin{gathered} 0.5 \\ -150 \end{gathered}$			$\begin{gathered} 0.5 \\ -150 \end{gathered}$			$\begin{gathered} 0.5 \\ -150 \end{gathered}$			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.

1. Input parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}} . \mathrm{V}_{\mathrm{CC}}$ can vary $+0.5 /-0.925 \mathrm{~V}$.
2. $\mathrm{V}_{\mathrm{IHCMR}}$ min varies $1: 1$ with GND. $\mathrm{V}_{\text {IHCMR }}$ max varies $1: 1$ with V_{CC}.

Table 6. DC CHARACTERISTICS NECL OUTPUT $\left(\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}\right.$ to 3.8 V ; $\mathrm{V}_{\mathrm{EE}}=-2.375 \mathrm{~V}$ to -3.8 V ; GND $=0 \mathrm{~V}$ (Note 1))

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$I_{\text {EE }}$	Negative Power Supply Current	40	50	60	38	50	68	38	50	68	mA
V_{OH}	Output HIGH Voltage (Note 2)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2)	-1945	-1770	-1600	-1945	-1770	-1600	-1945	-1770	-1600	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.

1. Output parameters vary $1: 1$ with GND.
2. All loading with 50Ω resistor to GND -2.0 V .

Table 7. AC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}\right.$ to 3.8 V ; $\mathrm{V}_{\mathrm{EE}}=-2.375 \mathrm{~V}$ to -3.8 V ; GND $=0 \mathrm{~V}$)

	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
Symbol		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$V_{\text {OUTPP }}$	$\begin{aligned} & \hline \text { Output Voltage Amplitude (Figure 4) (Note 1) } \\ & f_{\text {in }} \perp+1.0 \mathrm{GHz} \\ & f_{\text {in }} \perp+1.5 \mathrm{GHz} \\ & \mathrm{f}_{\text {in }} \perp+2.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 575 \\ & 525 \\ & 300 \end{aligned}$	$\begin{aligned} & 800 \\ & 750 \\ & 600 \end{aligned}$		$\begin{aligned} & 600 \\ & 525 \\ & 250 \end{aligned}$	$\begin{aligned} & 800 \\ & 750 \\ & 550 \end{aligned}$		$\begin{aligned} & 550 \\ & 400 \\ & 150 \end{aligned}$	$\begin{aligned} & 800 \\ & 750 \\ & 500 \end{aligned}$		mV
$\begin{aligned} & \hline \mathrm{tpLH}^{\text {tPHLO }} \end{aligned}$	```Propagation Delay Differential D to Q Single-Ended```	$\begin{aligned} & 375 \\ & 300 \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \end{aligned}$	$\begin{aligned} & 600 \\ & 650 \end{aligned}$	$\begin{aligned} & 375 \\ & 300 \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \end{aligned}$	$\begin{aligned} & 600 \\ & 675 \end{aligned}$	$\begin{aligned} & 400 \\ & 300 \end{aligned}$	$\begin{aligned} & 550 \\ & 500 \end{aligned}$	$\begin{aligned} & 650 \\ & 750 \end{aligned}$	ps
${ }^{\text {tskEW }}$	Pulse Skew (Note 2) Output-to-Output (Note 3) Part-to-Part (Diff) (Note 3)		$\begin{aligned} & 15 \\ & 25 \\ & 50 \end{aligned}$	$\begin{gathered} \hline 75 \\ 95 \\ 125 \end{gathered}$		15 30 50	$\begin{gathered} \hline 75 \\ 105 \\ 125 \end{gathered}$		15 30 70	$\begin{gathered} \hline 80 \\ 105 \\ 150 \end{gathered}$	ps
$\mathrm{t}_{\text {JITTER }}$	$\begin{aligned} & \text { RMS Random Clock Jitter (Note 4) } \\ & \mathrm{f}_{\text {in }}=2.0 \mathrm{GHz} \\ & \text { Peak-to-Peak Data Dependant Jitter (Note 5) } \\ & \mathrm{f}_{\text {in }}=2.0 \mathrm{~Gb} / \mathrm{s} \end{aligned}$		$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$	2.0		$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$	2.0		$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$	2.0	ps
$\mathrm{V}_{\text {INPP }}$	Input Voltage Swing (Differential Configuration) (Note 6)	200	800	1200	200	800	1200	200	800	1200	mV
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	$\begin{aligned} & \text { Output Rise/Fall Times @ } 50 \mathrm{MHz} \\ & (20 \%-80 \%) \mathrm{Q}, \mathrm{Q} \end{aligned}$	75	150	250	75	150	250	75	150	275	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

1. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50Ω to GND - 2.0 V . Input edge rates $150 \mathrm{ps}(20 \%-80 \%)$.
2. Pulse Skew $=\mid$ tpLH - tphl $_{\text {P }} \mid$
3. Skews are valid across specified voltage range, part-to-part skew is for a given temperature.
4. RMS Jitter with 50% Duty Cycle Input Clock Signal.
5. Peak-to-Peak Jitter with input NRZ PRBS 2^{31-1} at $2.0 \mathrm{~Gb} / \mathrm{s}$.
6. Input voltage swing is a single-ended measurement operating in differential mode. The device has a DC gain of ≈ 50.

Figure 4. Output Voltage Amplitude (Voutpp) / RMS Jitter vs. Input Frequency (f_{in}) at Ambient Temperature (Typical)

NB100LVEP91

Figure 5. AC Reference Measurement

Application Information

All NB100LVEP91 inputs can accept LVPECL, LVTTL, LVCMOS, HSTL, CML, or LVDS signal levels. The limitations for differential input signal (LVDS, HSTL, LVPECL, or CML) are the minimum input swing of 150 mV

Figure 6. Standard LVPECL Interface

Figure 8. Standard HSTL Interface

Figure 10. Standard LVTTL Interface
and the maximum input swing of 3.0 V . Within these conditions, the input voltage can range from V_{CC} to GND. Examples interfaces are illustrated below in a 50Ω environment $(\mathrm{Z}=50 \Omega)$

Figure 7. Standard LVDS Interface

Figure 9. Standard 50Ω Load CML Interface

Figure 11. Standard LVCMOS Interface (D Will Default to $\mathrm{V}_{\mathrm{Cc}} / 2$ When Left Open. A Reference Voltage of $\mathrm{V}_{\mathrm{cc}} / 2$ Should be Applied to D Input, if D is Interfaced to CMOS Signals.)

NB100LVEP91

Figure 12. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)
Resource Reference of Application Notes
AN1405/D - ECL Clock Distribution Techniques
AN1406/D - Designing with PECL (ECL at +5.0 V)
AN1503/D - ECLinPS ${ }^{\text {mi }}$ I/O SPiCE Modeling Kit
AN1504/D - Metastability and the ECLinPS Family
AN1568/D - Interfacing Between LVDS and ECL
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design
AND8002/D - Marking and Date Codes
AND8020/D - Termination of ECL Logic Devices
AND8066/D - Interfacing with ECLinPS
AND8090/D - AC Characteristics of ECL Devices

QFN24, 4x4, 0.5P
CASE 485L
ISSUE B
DATE 05 JUN 2012
SCALE 2:1

DETAIL A
alternate CONSTRUCTIONS

DETAIL B ALTERNATE TERMINAL CONSTRUCTIONS
notes:

1. Dimensioning and tolerancing per asme Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLES TO PLATED TERMINAL

AND IS MEASURED BETWEEN 0.25 AND 0.30 Mn FROM THE TERMINALTIP.
4. COPLANARITY APPLES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.80	1.00
A1	0.00	0.05
A3	0.20 REF	
b	0.20	
D	0.30	
D2	2.70	
E	2.90	
E2	4.00	
		BSC
e	0.50	
L	0.30	2.90
L1	0.05	0.50

GENERIC
 MARKING DIAGRAM*

${ }^{0}$ XXXXX
XXXXX
ALYW.

-

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- $\quad=$ Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present.

DOCUMENT NUMBER:	98AON11783D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	QFN24, 4X4, 0.5P		PAGE 1 OF 1

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SCALE 1:1

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES

PER ASME Y14.5M, 1994
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE
5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF B SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS	
	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
b	0.35	0.49
\mathbf{c}	0.23	0.32
D	12.65	12.95
E	7.40	7.60
e	1.27 BSC	
H	10.05	10.55
\mathbf{h}	0.25	0.75
L	0.50	0.90
$\boldsymbol{\theta}$	0°	7°

GENERIC
MARKING DIAGRAM*

XXXXX	$=$ Specific Device Code
A	$=$ Assembly Location
WL	$=$ Wafer Lot
YY	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present.

| DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-20 WB | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSX3018MUTAG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CSW\#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ ADG3241BKSZ500RL7

