3.3 V Zero Delay Clock Buffer

NB2304A

The NB2304A is a versatile, 3.3 V zero delay buffer designed to distribute high-speed clocks in PC, workstation, datacom, telecom and other high-performance applications. It is available in an 8 pin package. The part has an on-chip PLL which locks to an input clock presented on the REF pin. The PLL feedback is required to be driven to FBK pin, and can be obtained from one of the outputs. The input-to-output propagation delay is guaranteed to be less than 250 ps , and the output-to-output skew is guaranteed to be less than 200 ps.

The NB2304A has two Banks of two outputs each. Multiple NB2304A devices can accept the same input clock and distribute it. In this case, the skew between the outputs of the two devices is guaranteed to be less than 500 ps .

The NB2304A is available in two different configurations (Refer to NB2304A Configurations Table). The NB2304AI1 is the base part, where the output frequencies equal the reference if there is no counter in the feedback path. The NB2304AI2 allows the user to obtain REF, $1 / 2 \mathrm{X}$ and 2 X frequencies on each output Bank. The exact configuration and output frequencies depend on which output drives the feedback pin.

Features

- Zero Input - Output Propagation Delay, Adjustable by Capacitive Load on FBK Input
- Multiple Configurations - Refer to NB2304A Configurations Table
- Input Frequency Range: 15 MHz to 133 MHz
- Multiple Low-Skew Outputs
- Output-Output Skew < 200 ps
- Device-Device Skew < 500 ps
- Two Banks of Four Outputs
- Less than 200 ps Cycle-to-Cycle Jitter (-1)
- Available in Space Saving, 8 pin 150 mil SOIC Package
- 3.3 V Operation
- Advanced 0.35μ CMOS Technology
- Guaranteed Across Commercial and Industrial Temperature Ranges
- These Devices are Pb -Free, Halogen Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

SOIC-8
D SUFFIX
CASE 751

MARKING DIAGRAM

4lx	$=$ Specific Device Code
	x $=1$ or 2
A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
-	Pb-Free Package

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

NB2304A

Figure 1. Basic Block Diagram
(see Figures 10 and 11 for device specific Block Diagrams)

Table 1. CONFIGURATIONS

Device	Feedback From	Bank A Frequency	Bank B Frequency
NB2304AI1	Bank A or Bank B	Reference	Reference
NB2304AI2	Bank A	Reference	Reference $\div 2$
NB2304AI2	Bank B	$2 \times$ Reference	Reference

Figure 2. Pin Configuration

Table 2. PIN DESCRIPTION

Pin \#	Pin Name	Description
1	REF (Note 1)	Input reference frequency, 5 V tolerant input.
2	CLKA1 (Note 2)	Buffered clock output, Bank A.
3	CLKA2 (Note 2)	Buffered clock output, Bank A.
4	GND	Ground.
5	CLKB1 (Note 2)	Buffered clock output, Bank B.
6	CLKB2 (Note 2)	Buffered clock output, Bank B.
7	V DD 2	3.3 V supply.
8	FBK	PLL feedback input.

1. Weak pulldown.
2. Weak pulldown on all outputs.

NB2304A

Table 3. MAXIMUM RATINGS

Parameter	Min	Max	Unit
Supply Voltage to Ground Potential	-0.5	+7.0	V
DC Input Voltage (Except REF)	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	
DC Input Voltage (REF)	-0.5	7	V
Storage Temperature	-65	+150	${ }^{\circ} \mathrm{C}$
Maximum Soldering Temperature (10 sec)		260	${ }^{\circ} \mathrm{C}$
Junction Temperature		150	${ }^{\circ} \mathrm{C}$
Static Discharge Voltage (per MIL-STD-883, Method 3015)			

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. OPERATING CONDITIONS

Parameter	Description	Min	Max	Unit
V_{DD}	Supply Voltage	3.0	3.6	
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature (Ambient Temperature)	Industrial Commercial	-40 0	85 70
C_{L}	Load Capacitance, 15 MHz to 100 MHz		${ }^{\circ} \mathrm{C}$	
C_{L}	Load Capacitance, from 100 MHz to 133 MHz			
C_{IN}	Input Capacitance (Note 3)		15	pF

3. Applies to both REF Clock and FBK.

Table 5. ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V , $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Parameter	Description	Test Conditions	Min	Max	Unit
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V
V_{IH}	Input HIGH Voltage		2.0		V
IIL	Input LOW Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		50.0	$\mu \mathrm{A}$
IIH	Input HIGH Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$		100.0	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}(-1,-2)$		0.4	V
V_{OH}	Output HIGH Voltage	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}(-1,-2)$	2.4		V
IDD	Supply Current	Unloaded outputs 100 MHz REF Select inputs at $V_{D D}$ or GND		45	mA
		Unloaded outputs, 66 MHz REF ($-1,-2$)		35	
		Unloaded outputs, 33 MHz REF ($-1,-2$)		20	

Table 6. SWITCHING CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
(All parameters are specified with loaded outputs)

Parameter	Description	Test Conditions	Min	Typ	Max	Unit
t_{1}	Output Frequency	30 pF load (all devices) 15 pF load ($-1,-2$)	$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{gathered} \hline 100 \\ 133.3 \end{gathered}$	MHz
t_{1}	Duty Cycle $=\left(\mathrm{t}_{2} / \mathrm{t}_{1}\right) * 100$ (all devices)	$\begin{aligned} & \text { Measured at } 1.4 \mathrm{~V} \text {, Fout } \leq 66.66 \mathrm{MHz} \\ & 30 \mathrm{pF} \text { load } \end{aligned}$	40.0	50.0	60.0	\%
		$\text { Measured at } 1.4 \mathrm{~V} \text {, } \mathrm{F}_{\text {Out }} \leq 50 \mathrm{MHz}$ $15 \mathrm{pF} \text { load }$	45.0	50.0	55.0	
t_{3}	Output Rise Time$(-1,-2)$	Measured between 0.8 V and 2.0 V 30 pF load			2.50	ns
		Measured between 0.8 V and 2.0 V 15 pF load			1.50	
t_{4}	Output Fall Time$(-1,-2)$	Measured between 2.0 V and 0.8 V 30 pF load			2.50	ns
		Measured between 2.0 V and 0.8 V 15 pF load			1.50	
t_{5}	Output-to-Output Skew on same Bank (-1, -2)	All outputs equally loaded			200	ps
	Output Bank A-to-Output Bank B skew (-1)	All outputs equally loaded			200	
	Output Bank A-to-Output Bank B skew (-2)	All outputs equally loaded			400	
t_{6}	Delay, REF Rising Edge to FBK Rising Edge	Measured at $\mathrm{V}_{\mathrm{DD}} / 2$		0	± 250	ps
t_{7}	Device-to-Device Skew	Measured at $\mathrm{V}_{\mathrm{DD}} / 2$ on the FBK pins of the device		0	500	ps
t_{J}	Cycle-to-Cycle Jitter(-1)	Measured at 66.67 MHz , loaded outputs, 15 pF load			180	ps
		Measured at 66.67 MHz , loaded outputs, 30 pF load			200	
		Measured at 133.3 MHz , loaded outputs, 15 pF load			100	
	Cycle-to-Cycle Jitter(-2)	Measured at 66.67 MHz , loaded outputs, 30 pF load			400	ps
		Measured at 66.67 MHz , loaded outputs, 15 pF load			380	
tıock	PLL Lock Time	Stable power supply, valid clock presented on REF and FBK pins			1.0	ms

Zero Delay and Skew Control

For applications requiring zero input-output delay, all outputs must be equally loaded.

OUTPUT LOAD DIFFERENCE: FBK LOAD - CLKA/CLKB LOAD (pF)

To close the feedback loop of the NB2304A, the FBK pin can be driven from any of the four available output pins. The output driving the FBK pin will be driving a total load of 7 pF plus any additional load that it drives. The relative loading of this output (with respect to the remaining outputs) can adjust the input output delay. This is shown in Figure 3.
For applications requiring zero input-output delay, all outputs including the one providing feedback should be equally loaded. If input-output delay adjustments are required, use Figure 3 to calculate loading differences between the feedback output and remaining outputs. For zero output-output skew, be sure to load outputs equally.

Figure 3. REF Input to CLKA/CLKB Delay vs. Difference in Loading between FBK Pin and CLKA/CLKB Pins

SWITCHING WAVEFORMS

Figure 4. Duty Cycle Timing

Figure 5. All Outputs Rise/Fall Time

Figure 6. Output - Output Skew

Figure 7. Input - Output Propagation Delay

Figure 8. Device - Device Skew

NB2304A

TEST CIRCUITS

Figure 9. Test Circuit \#1

BLOCK DIAGRAMS

Figure 10. NB2304Al1

Figure 11. NB2304AI2

ORDERING INFORMATION

Device	Marking	Operating Range	Package	Shipping †	Availability
NB2304AI1DR2G	411	 Commercial	SOIC-8 (Pb-Free)	2500 Tape \& Reel	Now
NB2304AI2DG	412	 Commercial	SOIC-8 (Pb-Free)	98 Units / Tube	Now
NB2304AI2DR2G	412	 Commercial	SOIC-8 (Pb-Free)	2500 Tape \& Reel	Now

[^0]

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^1] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
8. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR,
2. COLLECTOR, \#
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14
PIN 1. N-SOURCE
2. N-GATE
. P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

ON Semiconductor and (0N) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Phase Locked Loops - PLL category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
CPLL58-2400-2500 MB15E07SLPFV1-G-BND-6E1 PI6C2409-1HWEX BA4116FV-E2 HMC764LP6CETR CY22050KFI
LMX2430TMX/NOPB NB3N5573DTG ADF4153ABCPZ PI6C2405A-1LE CD74HC4046AM CPLL66-2450-2450 NJM567D
74HC4046ADB. 112 74HC4046APW. 112 CY23S05SXI-1 STW81200T ADF4208BRUZ ADF4218LBRUZ ADF4355-3BCPZ ADF4355-
2BCPZ ADF4355BCPZ ADF4169WCCPZ ADF4360-7BCPZ ADF4360-6BCPZ ADF4360-5BCPZRL7 ADF4360-5BCPZ ADF43604BCPZRL7 ADF4360-4BCPZ ADF4360-3BCPZ ADF4360-2BCPZRL7 ADF4252BCPZ ADF4159CCPZ ADF4169CCPZ ADF4252BCPZR7 ADF4360-0BCPZ ADF4360-1BCPZ ADF4360-1BCPZRL7 ADF4360-2BCPZ ADF4360-3BCPZRL7 ADF4360-7BCPZRL7 ADF43608BCPZ ADF4360-8BCPZRL7 ADF4360-9BCPZ ADF4360-9BCPZRL7 ADF4159CCPZ-RL7 ADF4159WCCPZ ADF4360-0BCPZRL7

AD9901KPZ AD9901KQ

[^0]: \dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

[^1]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

