NB3L8504S

2.5 V / 3.3 V 1:4 Differential Input to LVDS Fanout Buffer / Translator

Description

The NB3L8504S is a differential 1:4 LVDS fanout buffer/translator with OE control for each differential output. The differential inputs which can be driven by either a differential or single-ended input, can accept various logic level standards such as LVPECL, LVDS, HSTL, HCSL and SSTL. These signals are then translated to four identical LVDS copies of the input up to 700 MHz . As such, the NB3L8504S is ideal for Clock distribution applications that require low skew.

The NB3L8504S is offered in the TSSOP-16 package.

Features

- Four Differential LVDS Outputs
- Each Differential Output has OE Control
- 700 MHz Maximum Output Frequency
- 660 ps Max Output Rise and Fall Times, LVCMOS
- Translates Differential Input to LVDS Levels
- Additive Phase Jitter RMS: < 100 fs Typical
- 50 ps Maximum Output Skew
- 350 ps Maximum Part-to-part Skew
- 1.3 ns Maximum Propagation Delay
- Operating Range: $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \%$
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Ambient Operating Temperature
- 16-Pin TSSOP, $4.4 \mathrm{~mm} \times 5.0 \mathrm{~mm} \times 0.925 \mathrm{~mm}$
- These are $\mathrm{Pb}-$ Free Devices

Applications

- Telecom
- Ethernet
- Networking
- SONET

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

Figure 1. Logic Diagram

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

NB3L8504S

Table 1. PIN DESCRIPTIONS AND CHARACTERISTICS

Pin	Name	I/O	Description
1	OEO	LVTTL/LVCMOS Input	Output Enable pin for Q0, $\overline{\text { Q0 outputs. Defaults High when left open; internal pull-up }}$ resistor.
2	OE1	LVTTL/LVCMOS Input	Output Enable pin for Q1, Q1 outputs. Defaults High when left open; internal pull-up resistor.
3	OE2	LVTTL/LVCMOS Input	Output Enable pin for Q2, Q2 outputs. Defaults High when left open; internal pull-up resistor.
4	VDD	Power	3.3 V / 2.5 V Positive Supply Voltage.
5	GND	Power	3.3 V / 2.5 V Negative Supply Voltage.
6	CLK	Multi-Level Input	Non-inverting differential Clock input. Defaults Low when left open; internal pull-down resistor.
7	CLK	Multi-Level Input	Inverting differential Clock input. Defaults to VDD/2 when left open; internal pull-up and pull-down resistors.
8	OE3	LVTTL/LVCMOS Input	Output Enable pin for Q3, Q3 outputs. Defaults High when left open; internal pull-up resistor.
9	Q3	LVDS Output	Inverting differential Clock output.
10	Q3	LVDS Output	Non-inverting differential Clock output.
11	Q2	LVDS Output	Inverting differential Clock output.
12	Q2	LVDS Output	Non-inverting differential Clock output.
13	Q1	LVDS Output	Inverting differential Clock output.
14	Q1	LVDS Output	Non-inverting differential Clock output.
15	Q0	LVDS Output	Inverting differential Clock output.
16	Q0	LVDS Output	Non-inverting differential Clock output.

1. All VDD and GND pins must be externally connected to a power supply for proper operation.

Figure 2. NB3L8504S Pinout, 16-pin TSSOP (Top View)

Table 2. OUTPUT ENABLE FUNCTION TABLE

OE[3:0]	Outputs - Q[0:3], $\overline{\mathbf{Q}}[0: 3]$
LOW	High Impedance
HIGH (Default)	Active

NB3L8504S

Table 3. ATTRIBUTES

Characteristics	Value
ESD Protection $\begin{gathered}\text { Human Body Model } \\ \text { Machine Model }\end{gathered}$	$\begin{aligned} & \quad>2 \mathrm{kV} \\ & >200 \mathrm{~V} \end{aligned}$
RPU - Input Pull-up Resistor RPD - Input Pull-down Resistor	$\begin{aligned} & 50 \mathrm{k} \Omega \\ & 50 \mathrm{k} \Omega \end{aligned}$
$\mathrm{C}_{\text {IN }}$ - Input Capacitance	4 pF
$\mathrm{R}_{\text {IN }}$ - Input Impedance	$10 \mathrm{k} \Omega$
Moisture Sensitivity (Note 2) TSSOP-16	Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	371
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

2. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition		Rating	Unit
V_{DD}		$\mathrm{GND}=0 \mathrm{~V}$		4.6	V
$\mathrm{~V}_{\mathrm{IN}}$		$\mathrm{GND}=0 \mathrm{~V}$		-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {out }}$	$\begin{array}{l}\text { Continuous Current } \\ \text { Surge Current }\end{array}$	LVDS Outputs		10	
15					

\mathrm{mA}\end{array}\right]\)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
3. JEDEC standard multilayer board - 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 5. DC CHARACTERISTICS $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \%$; $\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Characteristic		Min	Typ	Max	Unit
POWER SUPPLY / CURRENT (Note 4)						
$V_{\text {D }}$	Power Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.97 \\ & 2.375 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 3.63 \\ & 2.625 \end{aligned}$	V
IDD	Power Supply Current for V $\mathrm{V}_{\text {D }}$			41	50	mA

LVDS OUTPUTS (Note 5)

V_{OD}	Differential Output Voltage (Figure 12) (Notes 6 and 7)	250	350	450
$\Delta \mathrm{~V}_{\mathrm{OD}}$	V_{OD} Magnitude Change (Figure 12) (Notes 6 and 7)		mV	
V_{OS}	Offset Voltage (Figure 13) (Notes 6 and 7)	1075	1250	1375
$\Delta \mathrm{~V}_{\mathrm{OS}}$	$\mathrm{V}_{\text {OS }}$ Magnitude Change (Figure 13) (Notes 6 and 7)		mV	
V_{OH}	Output HIGH Voltage		50	
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Voltage	900	1075	mV

DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (see Figure 5 \& 6) (Note 11)

$\mathrm{V}_{\text {IHD }}$	Differential Input HIGH Voltage	500	VDD-850	mV
$V_{\text {ILD }}$	Differential Input LOW Voltage	-300	VIHD - 150	mV
$\mathrm{V}_{\text {ID }}$	Differential Input Voltage ($\mathrm{V}_{\text {IHD }} \mathrm{V}_{\text {ILD }}$)	150	1300	mV
$\mathrm{V}_{\text {IHCMR }}$	Input Common Mode Voltage Range (Differential Configuration) (Note 10) (Figure 7)	GND + 0.5	VDD-850	mV
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{IN}}=3.63 \mathrm{~V}$ CLK, CLK		150	$\mu \mathrm{A}$
IIL	$\begin{array}{ll}\text { Input LOW Current, } \mathrm{V}_{\mathrm{DD}}=3.63 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} & \text { CLK } \\ & \text { CLK }\end{array}$	$\begin{gathered} \hline-5 \\ -150 \end{gathered}$		$\mu \mathrm{A}$

LVCMOS - OE Control Inputs

V_{IH}	Input HIGH Voltage	2.0		$\mathrm{VDD}+0.3$	V
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage	-0.3		0.8	V
I_{IH}	Input HIGH Current, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{IN}}=3.63 \mathrm{~V}$			5	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current, $\mathrm{V}_{\mathrm{DD}}=3.63 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-150			$\mu \mathrm{~A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
4. Input pins open and output pins loaded with $R_{L}=100 \Omega$ across differential.
5. LVDS outputs require 100Ω receiver termination resistor between diff. pair. See Figure 14.
6. VOS max $+1 / 2$ VOD max. Also see Figures 12 and 13 .
7. VOS $\min -1 / 2$ VOD max. Also see Figures 12 and 13.
8. VIH, VIL, Vth, and VISE parameters must be complied with simultaneously.
9. Vth is applied to the complementary input when operating in single-ended mode.
10. $\mathrm{V}_{\text {IHCMR }}$ max varies $1: 1$ with V_{DD}, $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $G N D$.
11. $\mathrm{V}_{\text {IHD }}, \mathrm{V}_{\text {ILD }}, \mathrm{V}_{\text {ID }}$ and $\mathrm{V}_{\text {IHCMR }}$ parameters must be complied with simultaneously.

Table 6. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \%$; $\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Note 12) (Figure 10)

Symbol	Characteristic	Min	Typ	Max	Unit
$\mathrm{f}_{\text {MAX }}$	Input Clock Frequency $\quad V_{\text {OUTPP }} \geq 250 \mathrm{mV}$ @ $\mathrm{V}_{\text {INPPmax }}$			700	MHz
$\mathrm{V}_{\text {OUTPP }}$	Output Voltage Amplitude ($@ V_{\text {INPPmin }}$) $f_{\text {in }} \leq 700 \mathrm{MHz}$ (See Figure 3)	250	350		mV
tpd	Differential Input to Differential Output Propagation Delay at $f_{\text {MAX }}$ @ $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	0.9		1.3	ns
tijt(\$)	Additive Phase Jitter RMS (Figure 4) $\mathrm{f}_{\text {out }}=156.25 \mathrm{MHz}$ Integration Range: $12 \mathrm{kHz}-20 \mathrm{MHz}$ $\mathrm{f}_{\text {out }}=100 \mathrm{MHz}$		$\begin{aligned} & 0.07 \\ & 0.10 \end{aligned}$	$\begin{aligned} & \hline 0.08 \\ & 0.105 \end{aligned}$	ps
$\mathrm{t}_{\text {SKEW(0-0) }}$	Output-to-output Skew (Note 14) (Figure 8)			50	ps
$\mathrm{T}_{\text {SKEW(pp) }}$	Part-to-part Skew (Note 14)			350	ps
$\mathrm{tr}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall Times @ 50 MHz , 20\% - 80\%	180	350	660	ps
t_{DC}	Output Clock Duty Cycle (Input Duty Cycle = 50\%)	45	50	55	\%
VINPP	Input Voltage Swing (Differential Configuration) (Note 13)	150		1300	mV

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
12. Measured by forcing a 50% duty cycle clock source. All LVDS output loading with an external $R_{L}=100 \Omega$ across Q \& \bar{Q}.
13. $\mathrm{V}_{\text {INPP(max) }}$ cannot exceed V_{DD}. Input voltage swing is a single-ended measurement operating in differential mode.
14. Skew is measured between outputs under identical transition at 50 MHz .

Figure 3. Output Voltage Amplitude ($\mathrm{V}_{\text {OUTPP }}$) vs. Input Clock Frequency (f_{in}) and Temperature (@ $\mathrm{V}_{\mathrm{DD}}=\mathbf{2 . 5} \mathrm{V}$)

Figure 4. Additive Phase Jitter

Figure 6. Differential Inputs Driven Differentially

Figure 7. VIHCMR Diagram

Figure 8. Output-to-Output Skew

Figure 9. LVDS Output

Figure 11. LVDS Output

Figure 10. AC Reference Measurements

Figure 13. V_{OS} and $\Delta \mathrm{V}_{\mathrm{OS}}$

Figure 14. Typical LVDS Termination for Output Driver and Device Evaluation

Figure 15. Typical Test Setup and Termination for Evaluation. The $\mathrm{V}_{\mathrm{DD}}=2.05 \mathrm{~V} \pm 0.165 \mathrm{~V}$ and GND of -1.25 Split Supply Allows a Direct Connection to an Oscilloscope 50Ω Input Module

Figure 16. Differential Input Interface from LVPECL, CML, LVDS, HSTL, SSTL or HCSL

NB3L8504S

Figure 17. Differential Input Driven Single-ended

Differential Clock Input to Accept Single-ended Input
Figure 17 shows how the CLK input can be driven by a single-ended Clock signal. C 1 is connected to the $\mathrm{V}_{\text {ref }}$ node
as a bypass capacitor. Locate these components close the device pins. R1 and R2 must be adjusted to position $\mathrm{V}_{\text {ref }}$ to the center of the input swing on CLK.

Table 7. ORDERING INFORMATION

Device	Package	Shipping
NB3L8504SDTG	TSSOP-16	
	(Pb-Free)	96 Units / Tube
NB3L8504SDTR2G	TSSOP-16	

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006

SCALE 2:1

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LVDS Interface IC category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FIN224ACMLX 8T49N2083NLGI\# MAX9135GHJ+ MS1224 SN65LVP16DRFT SN65MLVD200D MAX9176EUB+ DS90LV047ATMX/NOPB DS90LV018ATM DS90LT012AHMF DS90LV049TMT DS90LV047ATM DS90LV032ATMTC DS90C383MTDX/NOPB DS90C383MTD DS90LV031ATMTC DS90C402M SN65LVDS051PWRQ1 DS90C387VJDXNOPB SN65LVDT32BDR ADN4665ARUZ ADN4666ARUZ ADN4666ARZ-REEL7 ADN4692EBRZ ADN4693EBRZ ADN4697EBRZ ADN4695EBRZ ADN4665ARZ ADN4666ARZ ADN4667ARZ ADN4667ARZ-REEL7 ADN4668ARZ ADN4670BSTZ ADN4670BCPZ ADN4661BRZ ADN4663BRZ-REEL7 ADN4694EBRZ-RL7 ADN4662BRZ-REEL7 ADN4662BRZ ADN4691EBRZ ADN4694EBRZ ADN4690EBRZ ADN4661BRZ-REEL7 MAX9113ESA+ GM8285BGA MAX9113ESA+T MAX9111ESA+T MAX9112ESA+T MAX9122EUE+T MAX9174EUB+T

