NB3M8304C

3．3 V 200 MHz $1: 4$ LVCMOS／LVTTL Low Skew Fanout Buffer

Description

The NB3M8304C is 1：4 fanout buffer with LVCMOS／LVTTL input and output．The device supports the core supply voltage of $3.3 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}}\right.$ pin）and output supply voltage of 2.5 V or $3.3 \mathrm{~V}\left(\mathrm{~V}_{\text {DDO }} \mathrm{pin}\right)$ ．The $\mathrm{V}_{\mathrm{DDO}}$ pin powers the four single ended LVCMOS／LVTTL outputs．

The NB3M8304C is Form，Fit and Function（pin to pin）compatible to ICS8304 and ICS8304I．The NB3M8304C is qualified for industrial operating temperature range．

Features

－Input Clock Frequency up to 200 MHz
－Low Output to Output Skew： 45 ps max
－Low Part to Part Skew： 500 ps max
－Low Additive RMS Phase Jitter
－Input Clock Accepts LVCMOS／LVTTL Levels
－Operating Voltage：
－Core Supply：VDD $=3.3 \mathrm{~V} \pm 5 \%$
－Output Supply： $\mathrm{V}_{\mathrm{DDO}}=3.3 \mathrm{~V} \pm 5 \%$ or $2.5 \mathrm{~V} \pm 5 \%$
－Operating Temperature Range：
－Industrial：$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
－These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
www．onsemi．com

A＝Assembly Location
L＝Wafer Lot
Y＝Year
W＝Work Week
－＝Pb－Free Package
（Note：Microdot may be in either location）

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet．

Figure 1．Block Diagram

NB3M8304C

Figure 2. Pin Configuration (Top View)

Table 1. PIN DESCRIPTION

Pin Number	Name	Type	Description
1	VDDO	Output Power	Clock output Supply pin.
2	VDD	Input and Core Power	Input and Core Supply pin.
3	CLK	LVCMOS/LVTTL Input	Clock Input. Internally pull-down.
4	GND	Ground	Supply Ground.
$5,6,7,8$	Q[0:3]	LVCMOS/LVTTL Output	LVCMOS/LVTTL Clock output.

Table 2. MAXIMUM RATINGS

Symbol	Parameter	Condition	Min	Max	Unit
$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {DDO }}$	Power Supply		-	4.6	V
V_{1}	Input Voltage		-0.5	$V_{D D}+0.5$	V
$\mathrm{T}_{\text {stg }}$	Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\theta_{J A}$	Thermal Resistance (Junction-to-Ambient) SOIC-8	$\begin{gathered} 0 \text { lfpm } \\ 500 \text { lfpm } \end{gathered}$		$\begin{aligned} & 80 \\ & 55 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{J c}$	Thermal Resistance (Junction to Case) (Note 1)			12-17	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder	3 sec		265	${ }^{\circ} \mathrm{C}$
MSL	Moisture Sensitivity SOIC-8	Indefinite Time Out of Drypack (Note 2)	Level 1		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. JEDEC standard multilayer board - 2S2P (2 signal, 2 power)
2. For additional information, see Application Note AND8003/D.

Table 3. DC OPERATING CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Condition	Min	Typ	Max	Unit
R_{IN}	Input Pull-down Resistor (CLK Pin)			51		$\mathrm{k} \Omega$
C_{IN}	Input Capacitance			4		pF
$\mathrm{R}_{\mathrm{OUT}}$	Output Impedance (Note 3)		5	7	12	Ω
C_{PD}	Power Dissipation Capacitance (per output)	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDO}}=3.465 \mathrm{~V}$		15		pF
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
I_{IH}	Input High Current	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}$			150	$\mu \mathrm{~A}$
I_{IL}	Input Low Current	$\mathrm{V}_{\mathrm{DD}} 3.465 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.0 \mathrm{~V}$	-0.5			$\mu \mathrm{~A}$

3. Outputs terminated with 50Ω to $V_{\text {DDO }} / 2$. See Figure 4 for supply considerations.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 4. DC OPERATING CHARACTERISTICS $\left(T_{A}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Condition	Min	Max	Unit
$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\text {DDO }}=2.5 \mathrm{~V} \pm 5 \%$					
$\mathrm{V}_{\text {DDO }}$	Output Supply Voltage		2.375	2.625	V
V_{OH}	Output HIGH Voltage	$\mathrm{IOH}=-100 \mu \mathrm{~A}$	2.2		V
		$\mathrm{IOH}=-16 \mathrm{~mA}$	2.1		
		50Ω to $\mathrm{V}_{\mathrm{DDO}} / 2$	2.1		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{IOL}=16 \mathrm{~mA}$		0.25	
		$\mathrm{loL}=100 \mu \mathrm{~A}$		0.2	V
		50Ω to $\mathrm{V}_{\mathrm{DDO}} / 2$		0.5	
$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDO}}=3.3 \mathrm{~V} \pm 5 \%$					
$\mathrm{V}_{\text {DDO }}$	Output Supply Voltage		3.135	3.465	V
V_{OH}	Output HIGH Voltage	$\mathrm{IOH}=-16 \mathrm{~mA}$	2.9		V
		$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	3		
		50Ω to $\mathrm{V}_{\mathrm{DDO}} / 2$	2.6		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.25	
		l OL $=100 \mu \mathrm{~A}$		0.15	V
		50Ω to $\mathrm{V}_{\mathrm{DDO}} / 2$		0.5	

Table 5. DC OPERATING CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDO}}=3.3 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDO}}=2.5 \mathrm{~V} \pm 5 \%$)

Symbol	Parameter	Condition	Min	Max	Unit
I_{DD}	Quiescent Power Supply Current	No Load		15	mA
$\mathrm{I}_{\mathrm{DDO}}$	Quiescent Power Supply Current	No Load		8	mA
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Voltage		2	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage		-0.3	1.3	V

Table 6. AC CHARACTERISTICS (Note 4)

Symbol	Parameter	Condition	Min	Typ	Max	Unit
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\text {DDO }}=3.3 \mathrm{~V} \pm 5 \%$						
$\mathrm{F}_{\text {IN }}$	Input Frequency				200	MHz
tpLH	Propagation Delay (Note 5)	Fin $=200 \mathrm{MHz}$	1.9		3.3	ns
tSKEW	Output to Output Skew(Note 6)			25	45	ps
	Part to Part Skew (Note 6)			250	800	ps
tskewdi	Output Duty Cycle (see Figure 3)	Fin $=200 \mathrm{MHz}$	40		60	\%
tr/tf	Output rise and fall times (Note 7)	$\begin{gathered} 30 \% \text { to } 70 \%, \mathrm{RS}=33 \Omega, \\ \mathrm{CL}=10 \mathrm{pF} \end{gathered}$	250		500	ps

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDO}}=2.5 \mathrm{~V} \pm 5 \%$

$\mathrm{F}_{\text {IN }}$	Input Frequency				200	MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay (Note 5)	Fin $=200 \mathrm{MHz}$	2.2		3.7	ns
t SKEW	Output to Output Skew(Note 6)			25	45	ps
	Part to Part Skew (Note 6)			250	500	ps
tsKEWDC	Output Duty Cycle (see Figure 3)	Fin $=200 \mathrm{MHz}$	40		60	$\%$
tr/tf	Output rise and fall times (Note 7)	30% to $70 \%, \mathrm{RS}=33 \Omega$, $\mathrm{CL}=10 \mathrm{pF}$	200		500	ps

4. Clock input with 50% duty cycle. Outputs terminated with 50Ω to $\mathrm{V}_{\mathrm{DDO}} / 2$. See Figures 3 and 4 .
5. Measured from $\mathrm{V}_{\mathrm{DD}} / 2$ of the input to $\mathrm{V}_{\mathrm{DDO}} / 2$ of the output.
6. Similar input conditions and the same supply voltages. Measured at $V_{D D O} / 2$. See Figures 3 and 4 .
7. RS is Series Resistance and CL is Load Capacitance at the clock outputs.

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Figure 3. AC Reference Measurement

Spec Condition:	TEST SETUP $\mathrm{V}_{\mathrm{DD}}:$	TEST SETUP $\mathrm{V}_{\text {DDO }}:$	TEST SETUP DUT GND:
$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDO}}=3.3 \mathrm{~V} \pm 5 \%$	$1.65 \mathrm{~V} \pm 5 \%$	$1.65 \mathrm{~V} \pm 5 \%$	$-1.65 \mathrm{~V} \pm 5 \%$
$\mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \% ;$	$2.05 \mathrm{~V} \pm 5 \%$	$1.25 \mathrm{~V} \pm 5 \%$	$-1.25 \mathrm{~V} \pm 5 \%$
$\mathrm{~V}_{\mathrm{DDO}}=2.5 \mathrm{~V} \pm 5 \%$			

Figure 4. Output Driver Typical Device Evaluation and Termination Setup
ORDERING INFORMATION

Device	Package	Shipping †
NB3M8304CDG	SOIC-8 (Pb-Free)	98 Units / Rail
NB3M8304CDR2G	SOIC-8 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
8. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR,
2. COLLECTOR, \#
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14
PIN 1. N-SOURCE
2. N-GATE
. P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

ON Semiconductor and (0N) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK854BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7 ADCLK905BCPZ-WP

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

