3.3 V Differential 1:10 Fanout Clock Driver with HCSL Outputs

NB3N111K

Description

The NB3N111K is a differential 1:10 Clock fanout buffer with High-speed Current Steering Logic (HCSL) outputs optimized for ultra low propagation delay variation. The NB3N111K is designed with PCI Express HCSL clock distribution and FBDIMM applications in mind.

Inputs can directly accept differential LVPECL, LVDS, and HCSL signals per Figures 7, 8, and 9. Single–ended LVPECL, HCSL, LVCMOS, or LVTTL levels are accepted with a proper external V_{th} reference supply per Figures 4 and 10. Input pins incorporate separate internal $50\ \Omega$ termination resistors allowing additional single ended system interconnect flexibility.

Output drive current is set by connecting a 475 Ω resistor from IREF (Pin 1) to GND per Figure 6. Outputs can also interface to LVDS receivers when terminated per Figure 11.

The NB3N111K specifically guarantees low output-to-output skew. Optimal design, layout, and processing minimize skew within a device and from device to device. System designers can take advantage of the NB3N111K's performance to distribute low skew clocks across the backplane or the motherboard.

Features

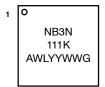
- Typical Input Clock Frequency 100, 133, 166, or 400 MHz
- 220 ps Typical Rise and Fall Times
- 800 ps Typical Propagation Delay
- Δtpd 100 ps Maximum Propagation Delay Variation per Diff Pair
- 0.1 ps Typical RMS Additive Phase Jitter
- LVDS Output Levels Optional with Interface Termination
- Operating Range: $V_{CC} = 3.0 \text{ V}$ to 3.6 V with GND = 0 V
- Typical HCSL Output Levels (700 mV Peak-to-Peak)
- LVDS Output Levels with Interface Termination
- These are Pb-Free Devices

Applications

- Clock Distribution
- PCIe I, II, III
- Networking
- High End Computing
- Routers

End Products

- Servers
- FBDIMM Memory Card


ON Semiconductor®

www.onsemi.com

QFN32 MN SUFFIX CASE 488AM

MARKING DIAGRAM*

A = Assembly Location

WL = Wafer Lot
 YY = Year
 WW = Work Week
 G = Pb-Free Package

*For additional marking information, refer to Application Note AND8002/D.

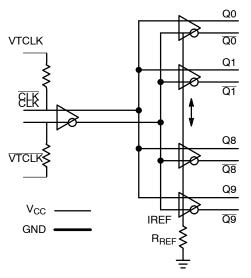


Figure 1. Simplified Logic Diagram

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

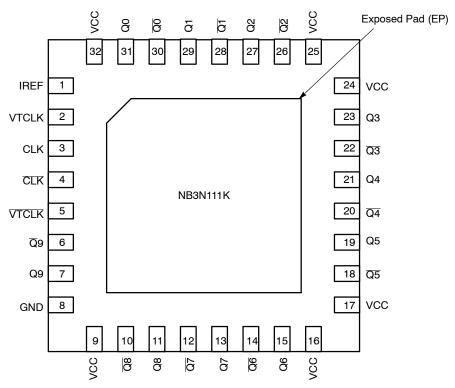


Figure 2. Pinout Configuration (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Description
1	IREF		Use the IREF pin to set the output drive. Connect a 475 Ω RREF resistor from the IREF pin to GND to produce 2.6 mA of IREF current. A current mirror multiplies IREF by a factor of 5.4x to force 14 mA through a 50 Ω output load. See Figures 6 and 12.
2, 5	VTCLK, VTCLK	-	Internal 50 Ω Termination Resistor connection Pins. In the differential configuration when the input termination pins are connected to the common termination voltage, and if no signal is applied then the device may be susceptible to self–oscillation.
3	CLK	LVPECL, HCSL, LVDS Input	Clock and Data (TRUE) Input
4	CLK	LVPECL, HCSL, LVDS Input	Clock and Data (INVERT) Input
6, 10, 12, 14, 18, 20, 22, 26, 28, 30	Q[9-0]	HCSL or LVDS (Note 1) Output	Output (INVERT) (Note 1)
7, 11, 13, 15, 19, 21, 23, 27, 29, 31	Q[9-0]	HCSL or LVDS (Note 1) Output	Output (TRUE) (Note 1)
8	GND	-	Supply Ground. GND pin must be externally connected to power supply to guarantee proper operation.
9, 16, 17, 24, 25, 32	VCC	-	Positive Voltage Supply pin. VCC pins must be externally connected to a power supply to guarantee proper operation.
Exposed Pad	EP	GND	Exposed Pad. The thermally exposed pad (EP) on package bottom (see case drawing) must be attached to a sufficient heat-sinking conduit for proper thermal operation and electrically connected to the circuit board ground (GND).

^{1.} Outputs can also interface to LVDS receiver when terminated per Figure 11.

Table 2. ATTRIBUTES

Characteristic	Value
ESD Protection Human Body Model Machine Model	>2 kV 200 V
Moisture Sensitivity (Note 2) QFN32	Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	286
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

^{2.} For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS (Note 3)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V		4.6	V
VI	Positive Input	GND = 0 V		$GND - 0.3 \le V_I \le V_{CC}$	V
VINPP	Differential Input Voltage			V _{CC}	V
l _{OUT}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range	QFN32		-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 3)	0 lfpm 500 lfpm	QFN32 QFN32	31 27	°C/W
θЈС	Thermal Resistance (Junction-to-Case)	2S2P (Note 3)	QFN32	12	°C/W
T _{sol}	Wave Solder Pb-Free			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

3. JEDEC standard 51–6, multilayer board – 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 4. DC CHARACTERISTICS ($V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$, $T_A = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$ Note 4)

Symbol	Characteristic	Min	Тур	Max	Unit
I _{GND}	GND Supply Current (All Outputs Loaded)		60	90	mA
I _{CC}	Power Supply Current (All Outputs Loaded)		210	260	mA
I _{IH}	Input HIGH Current		2.0	150	μΑ
I _{IL}	Input LOW Current	-150	-2.0		μΑ
R _{TIN}	Internal Input Termination Resistor	45	50	55	Ω
DIFFERE	NTIAL INPUT DRIVEN SINGLE-ENDED				
V _{th}	Input Threshold Reference Voltage Range (Note 5)	350		V _{CC} – 1000	mV
V _{IH}	Single – Ended Input HIGH Voltage	V _{th} + 150		V _{CC}	mV
V _{IL}	Single – Ended Input LOW Voltage	GND		V _{th} – 150	mV
DIFFERE	NTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 7, 8 and 9)				
V_{IHD}	Differential Input HIGH Voltage	425		V _{CC} – 850	mV
V_{ILD}	Differential Input LOW Voltage	GND		V _{CC} – 1000	mV
V_{ID}	Differential Input Voltage (V _{IHD} - V _{ILD})	150		V _{CC} - 850	mV
V_{CMR}	Input Common Mode Range	350		V _{CC} – 1000	mV
HCSL OL	ITPUTS (Figure 4)				
V _{OH}	Output HIGH Voltage	600	740	900	mV
V _{OL}	Output LOW Voltage	-150	0	150	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

^{4.} Measurements taken with outputs loaded 50 Ω to GND. Connect a 475 Ω resistor from IREF (Pin 1) to GND. See Figure 6.

^{5.} V_{th} is applied to the complementary input when operating in single ended mode per Figure 4.

Table 5. AC CHARACTERISTICS $V_{CC} = 3.0 \text{ V}$ to 3.6 V, GND = 0 V; -40°C to $+85^{\circ}\text{C}$ (Note 6)

Symbol	Characteristic	Min	Тур	Max	Unit
V _{OUTPP}	Output Voltage Amplitude (@ V _{INPPmin}) f _{in} ≤ 400 MHz		725	1000	mV
t _{PLH} , t _{PHL}	Propagation Delay (See Figure 3a) CLK/CLK to Qx/Qx	550	800	1100	ps
Δt _{PLH} , Δt _{PHL}	Propagation Delay Variation Per Each Diff Pair (Note 7) (See Figure 3a) CLK/CLK to Qx/Qx			100	ps
t _{SKEW}	Duty Cycle Skew (Note 8) Within –Device Skew Device to Device Skew (Note 9)			20 100 150	ps
$t_{JIT}\theta$	Additive Integrated Phase Jitter at Fc = 100 MHz (Note 10)		0.1		ps
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration)	0.150		V _{CC} - 0.85	٧
V _{CROSS}	Absolute Crossing Magnitude Voltage (See Figure 3b)	250		550	mV
ΔV_{CROSS}	Variation in Magnitude of V _{CROSS} (See Figure 3b)			150	mV
t _r , t _f	Absolute Magnitude in Output Risetime and Falltime (from 175 mV to 525 mV) (See Figure 3b) $ Qx, \overline{Qx} $	150	220	400	ps
Δtr, Δtf	Variation in Magnitude of Risetime and Falltime (Single-Ended) (See Figure 3b) Qx, \overline{Qx}			125	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- Measured by forcing V_{INPP} (MIN) from a 50% duty cycle. Measurement taken with all outputs loaded 50 Ω to GND. Connect a 475 Ω resistor from IREF (Pin 1) to GND. See Figure 6.
- 7. Measured from the input pair crosspoint to each single output pair crosspoint across temp and voltage ranges per Figure 3.
- 8. Duty cycle skew is measured between differential outputs using the deviations of the sum of T_{pw}- and T_{pw+}.
- 9. Skew is measured between outputs under identical transition conditions @ 50 MHz.
- 10. Phase noise integrated from 12 kHz to 20 MHz.

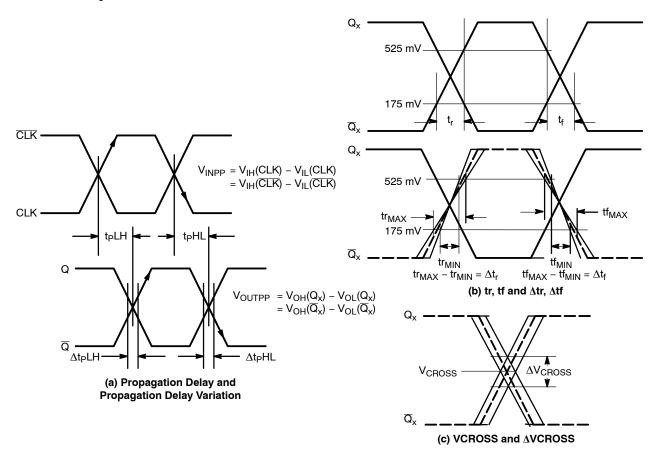
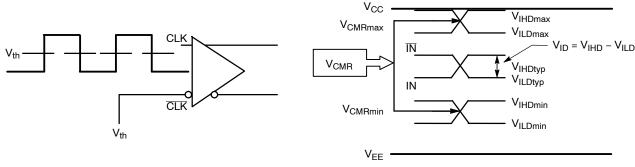
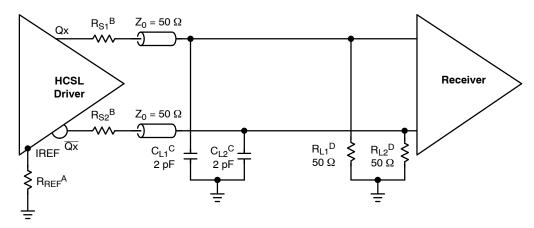


Figure 3. AC Reference Measurement

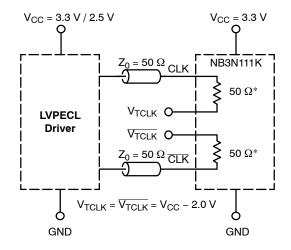

Figure 4. Single-Ended Interconnect V_{th} Reference Voltage

Figure 5. V_{th} Diagram

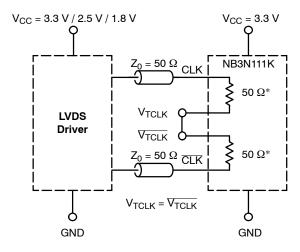
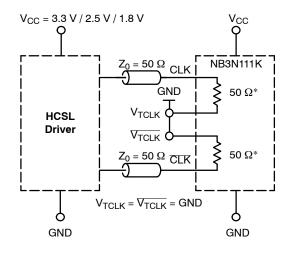
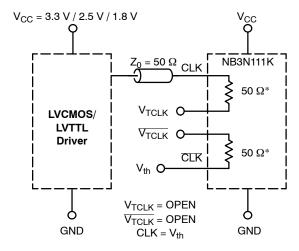

- **A**. Connect 475 Ω resistor R_{REF} from IREF pin to GND.
- **B**. R_{S1} , R_{S2} : 0 Ω for Test and Evaluation. Select to Minimizing Ringing.
- \mathbf{C} . \mathbf{C}_{L1} , \mathbf{C}_{L2} : Receiver Input Simulation (for test only not added to application circuit) Load capacitance only.
- D. D_{L1}, D_{L2} Termination and Load Resistors Located at Receiver Inputs.

Figure 6. Typical Termination Configuration for Output Driver and Device Evaluation


*RTIN, Internal Input Termination Resistor


Figure 7. LVPECL Interface

*RTIN, Internal Input Termination Resistor

Figure 8. LVDS Interface

*RTIN, Internal Input Termination Resistor

*RTIN, Internal Input Termination Resistor

Figure 9. Standard 50 Ω Load HCSL Interface

Figure 10. LVCMOS/LVTTL Interface

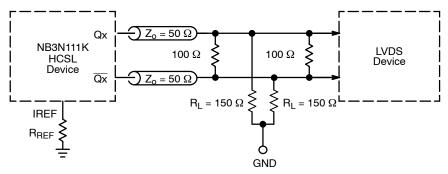
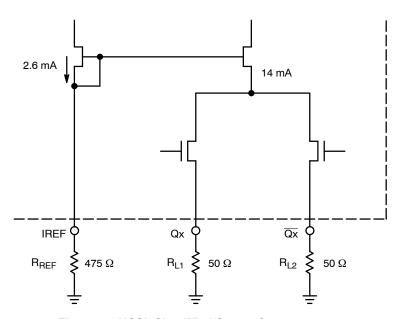
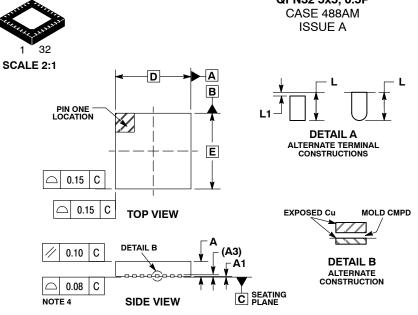
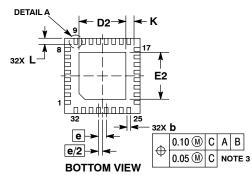
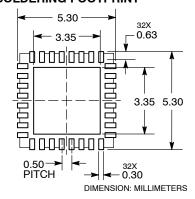


Figure 11. HCSL Interface Termination to LVDS


Figure 12. HCSL Simplified Output Structure

ORDERING INFORMATION

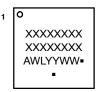

Device	Package	Shipping [†]
NB3N111KMNR4G	QFN32 (Pb-Free)	1000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and

QFN32 5x5, 0.5P


DATE 23 OCT 2013

NOTES:

- 1. DIMENSIONS AND TOLERANCING PER
- ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN
- 0.15 AND 0.30MM FROM THE TERMINAL TIP.
 COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

MILLIMETERS			
MIN	MAX		
0.80	1.00		
	0.05		
0.20	REF		
0.18	0.30		
5.00 BSC			
2.95	3.25		
5.00	BSC		
2.95	3.25		
0.50 BSC			
0.20			
0.30	0.50		
	0.15		
	MIN 0.80 0.20 0.18 5.00 2.95 5.00 2.95 0.50 0.20 0.30		

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

= Assembly Location WL = Wafer Lot

= Year VV WW = Work Week = Pb-Free Package

(Note: Microdot may be in either loca-

_tion) *This information is generic. Please refer to device data sheet for actual part marking.

Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER	and Chicagon	Electronic versions are u
* 1	erence Manual, SOLDERRM/D.	ara

uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98AON20032D Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** QFN32 5x5 0.5P **PAGE 1 OF 1**

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T
NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX
ZL40226LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG
MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB6L11MMNG
NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG
HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK854BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7
ADCLK905BCPZ-WP