NB3N2304NZ

3.3V 1:4 Clock Fanout Buffer

Description

The NB3N2304NZ is a low skew 1 -to 4 clock fanout buffer, designed for high speed clock distribution such as in PCI-X applications. The NB3N2304NZ guarantees low output-to-output skew. Optimal design, layout and processing minimizes skew within a device and from device-to-device.

The Output Enable (OE) pin forces the outputs LOW when LOW.

Features

- Input/Output Clock Frequency up to 140 MHz
- Low Skew Outputs (100 ps)
- Output Enable
- Operating Range: $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to 3.6 V
- Ideal for PCI-X and networking clocks
- Packaged in 8-pin TSSOP, $4.4 \mathrm{~mm} \times 3 \mathrm{~mm}$
- Industrial Temperature Range
- These are $\mathrm{Pb}-$ Free Devices*

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

MARKING
DIAGRAM*

TSSOP-8
DT SUFFIX
CASE 948S

MN SUFFIX
CASE 506AA

A	$=$ Assembly Location
Y	$=$ Year
WW	$=$ Work Week
M	$=$ Date Code
-	$=$ Pb-Free Package

*For additional marking information, refer to Application Note AND8002/D.

Figure 1. Simplified Logic Diagram

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Figure 2. Block Diagram

Figure 3. NB3N2304NZ Package Pinout (Top View)

Table 1. PIN DESCRIPTION

Pin \#	Pin Name	Type	
1	IN	LVCMOS/LVTTL Input	Clock Input
2	OE	LVCMOS/LVTTL Input	Output Enable for the clock outputs. Outputs are enabled when forced HIGH. Outputs are forced to logic LOW when OE is forced LOW.
3	Q1	LVCMOS/LVTTL Output	Clock Output 1
4	GND	Power	Negative Supply Voltage; Connect to Ground, 0 V
5	Q2	(LV)CMOS/(LV)TTL Input	Clock Output 2
6	$V_{\text {DD }}$	Power	Positive Supply Voltage (3.0 V to 3.6 V)
7	Q3	(LV)CMOS/(LV)TTL Output	Clock Output 3
8	Q4	(LV)CMOS/(LV)TTL Input	Clock Output 4
-	EP	Thermal Exposed Pad	(DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.

Table 2. OE, OUTPUT ENABLE FUNCTION TABLE

Inputs		Outputs
IN	OE	
L	L	L
H	L	L
L	H	L
H	H	H

Table 3. ATTRIBUTES

| Characteristics | Value |
| :--- | :---: | :---: |
| ESD Protection $\begin{array}{r}\text { Human Body Model } \\ \text { Machine Model }\end{array}$ | $\begin{array}{r}>2 \mathrm{kV} \\ >200 \mathrm{~V}\end{array}$ |
| Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) | |
| TSSOP-8 | |
| DFN-8 | |\(\left.\quad \begin{array}{r}Level 3

Level 1\end{array}\right]\)

1. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{DD}	Positive Power Supply	GND = 0 V		$\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	V
V_{1}	Input Voltage			$\begin{gathered} \text { GND }-0.5 \leq \\ V_{I} \leq V_{D D}+0.5 \end{gathered}$	V
T_{A}	Operating Temperature Range, Industrial			≥-40 to $\leq+85$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm 0 lfpm 500 lfpm	$\begin{aligned} & \hline \text { TSSOP-8 } 8 \\ & \text { TSSOP-8 } \\ & \text { DFN-8 } \\ & \text { DFN-8 } \end{aligned}$	$\begin{gathered} \hline 143 \\ 103 \\ 129 \\ 84 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
TSOL	Wave Solder Pb-Free	(Note 2)		265	${ }^{\circ} \mathrm{C}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	(Note 2)	DFN8	35 to 40	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
2. JEDEC standard multilayer board - 2S2P (2 signal, 2 power)

Table 5. DC CHARACTERISTICS $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit
I_{DD}	Power Supply Current @ 66.66 MHz, Unloaded Outputs		12	25	mA
V_{OH}	Output HIGH Voltage $\begin{aligned} & -\mathrm{IOH}=-24 \mathrm{~mA} \\ & -\mathrm{IOH}=-12 \mathrm{~mA}\end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.4 \end{aligned}$			V
$\mathrm{V}_{\text {OL }}$	$\begin{array}{ll}\text { Output LOW Voltage } & -\mathrm{IOL}=24 \mathrm{~mA} \\ -\mathrm{IOL}=12 \mathrm{~mA}\end{array}$			$\begin{gathered} 0.8 \\ 0.55 \end{gathered}$	V
V_{IH}	Input HIGH Voltage, IN and OE (Note 3)	2.0			V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage, IN and OE (Note 3)			0.8	V
I_{IH}	Input HIGH Current, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$	-50		50	$\mu \mathrm{A}$
IIL	Input LOW Current, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-100		100	$\mu \mathrm{A}$
CIN	Input Capacitance, IN, OE		5	7	pF

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
3. IN input has a threshold voltage of $\mathrm{V}_{\mathrm{DD}} / 2$.

Table 6. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 4) (Figure 4)

Symbol	Characteristic	Min	Typ	Max	Unit
$\mathrm{f}_{\text {in }}$	Input Clock Frequency	DC		140	MHz
$\mathrm{t}_{\text {DCskew }}$	Duty Cycle Skew = t2 $\div \mathrm{t} 1$ (Figure 4) Measured at 1.5 V	40	50	60	$\%$
tr/tf	Output Rise and Fall Times; 0.8 V to 2.0 V	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$			
$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$		0.9	1.5	ns	
$\mathrm{t}_{\text {pd }}$	Propagation Delay, IN-to-Qn (Note 5)		0.6		
$\mathrm{t}_{\text {skew }}$	Output-to-Output Skew; (Note 5)	2.5	3.5	5	ns
$\mathrm{t}_{\text {pu }}$	Powerup Time for V V_{DD} to Reach Minimum Specified Voltage			100	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
4. All outputs loaded equally with $C_{L}=25 \mathrm{pF}$ to GND . Duty cycle out $=$ duty in. $\mathrm{A} 0.01 \mu \mathrm{~F}$ decoupling capacitor should be connected between $V_{D D}$ and GND.
5. Measured on rising edges at $\mathrm{V}_{\mathrm{DD}} \div 2$; all outputs with equal loading.

NB3N2304NZ

All Outputs Rise/Fall Time

Output-Output Skew

Input-Output Propagation Delay

Figure 4. Switching Waveforms

ORDERING INFORMATION

Device	Package	Shipping †
NB3N2304NZDTG	TSSOP-8 (Pb-Free)	100 Units / Rail
NB3N2304NZDTR2G	TSSOP-8 (Pb-Free)	$2500 /$ Tape \& Reel
NB3N2304NZMNR4G*	DFN8 (Pb-Free)	$1000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*Contact a sales representative.

DFN8 2x2, 0.5P
CASE 506AA-01
ISSUE E
DATE 22 JAN 2010

SCALE 4:1

DIMENSIONING AND TOLERANCING PER ASME Y44.5M, 1994.
CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS	
DIM	MIN	MAX
A	0.80	1.00
A1	0.00	0.05
A3	0.20 REF	
b	0.20	0.30
D	2.00 BSC	
D2	1.10	1.30
E	2.00 BS	
E2	0.70	0.90
e	0.50 BSC	
K	0.30 REF	
L	0.25	0.35
L1	---	0.10

GENERIC
 MARKING DIAGRAM*

$$
\begin{aligned}
& \text { XXM= } \\
& \text { XX }=\text { Specific Device Code } \\
& M \quad=\text { Date Code } \\
& \text { : } \quad=\text { Pb-Free Device }
\end{aligned}
$$

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\boldsymbol{\nabla}$ ", may or may not be present.

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^0]TSSOP-8
CASE 948S-01
ISSUE C
DATE 20 JUN 2008
SCALE 2:1

notes:
. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	2.90	3.10	0.114	0.122
B	4.30	4.50	0.169	0.177
C	--	1.10	---	0.043
D	0.05	0.15	0.002	0.006
F	0.50	0.70	0.020	0.028
G	0.65 BSC	0.026 BSC		
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC	0.0 .252 BSC		
M	0°		8°	0

GENERIC MARKING DIAGRAM*

0 XXX
YWW
A

XXX = Specific Device Code
A = Assembly Location
Y = Year
WW = Work Week

- \quad Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

DOCUMENT NUMBER:	98AON00697D
STATUS:	ON SEMICONDUCTOR STANDARD
NEW STANDARD:	
DESCRIPTION:	TSSOP-8

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

[^1]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK854BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7 ADCLK905BCPZ-WP

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

[^1]: ON Semiconductor and (0il are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
 But and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

