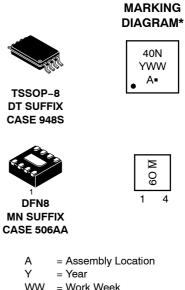
3.3V 1:4 Clock Fanout **Buffer**

Description

The NB3N2304NZ is a low skew 1-to 4 clock fanout buffer, designed for high speed clock distribution such as in PCI-X applications. The NB3N2304NZ guarantees low output-to-output skew. Optimal design, layout and processing minimizes skew within a device and from device-to-device.

The Output Enable (OE) pin forces the outputs LOW when LOW.


Features

- Input/Output Clock Frequency up to 140 MHz
- Low Skew Outputs (100 ps)
- Output Enable
- Operating Range: $V_{DD} = 3.0 \text{ V}$ to 3.6 V
- Ideal for PCI-X and networking clocks
- Packaged in 8-pin TSSOP, 4.4 mm x 3 mm
- Industrial Temperature Range
- These are Pb-Free Devices*

ON Semiconductor®

http://onsemi.com

- WW = Work Week = Date Code Μ
 - = Pb-Free Package

*For additional marking information, refer to Application Note AND8002/D.

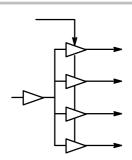


Figure 1. Simplified Logic Diagram

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NB3N2304NZ

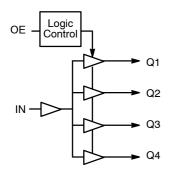


Figure 2. Block Diagram

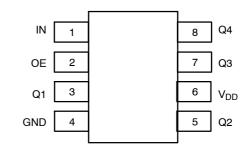


Figure 3. NB3N2304NZ Package Pinout (Top View)

Table 1. PIN DESCRIPTION

Pin #	Pin Name	Туре	Description
1	IN	LVCMOS/LVTTL Input	Clock Input
2	OE	LVCMOS/LVTTL Input	Output Enable for the clock outputs. Outputs are enabled when forced HIGH. Outputs are forced to logic LOW when OE is forced LOW.
3	Q1	LVCMOS/LVTTL Output	Clock Output 1
4	GND	Power	Negative Supply Voltage; Connect to Ground, 0 V
5	Q2	(LV)CMOS/(LV)TTL Input	Clock Output 2
6	V _{DD}	Power	Positive Supply Voltage (3.0 V to 3.6 V)
7	Q3	(LV)CMOS/(LV)TTL Output	Clock Output 3
8	Q4	(LV)CMOS/(LV)TTL Input	Clock Output 4
_	EP	Thermal Exposed Pad	(DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.

Table 2. OE, OUTPUT ENABLE FUNCTION TABLE

Inp	uts	Outputs
IN	OE	
L	L	L
Н	L	L
L	Н	L
Н	Н	Н

Table 3. ATTRIBUTES

Characterist	Value					
ESD Protection Human Body Model Machine Model		> 2kV > 200 V				
Moisture Sensitivity, Indefinite Time O	Level 3 Level 1					
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-O @ 0.125 in				
Transistor Count 480 Devices						
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test						

1. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{DD}	Positive Power Supply	GND = 0 V		V _{DD} + 0.5V	V
VI	Input Voltage			$\begin{array}{l} \text{GND} - 0.5 \leq \\ \text{V}_{\text{I}} \leq \text{V}_{\text{DD}} + 0.5 \end{array}$	V
T _A	Operating Temperature Range, Industrial			\geq -40 to \leq +85	°C
T _{stg}	Storage Temperature Range			–65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm 0 lfpm 500 lfpm	TSSOP-8 TSSOP-8 DFN-8 DFN-8	143 103 129 84	°C/W
T _{SOL}	Wave Solder Pb-Free	(Note 2)		265	°C
θ_{JC}	Thermal Resistance (Junction-to-Case)	(Note 2)	DFN8	35 to 40	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

2. JEDEC standard multilayer board - 2S2P (2 signal, 2 power)

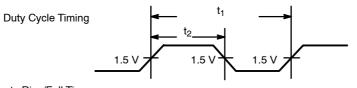
NB3N2304NZ

Symbol	Characteristic		Min	Тур	Max	Unit
I _{DD}	Power Supply Current @ 66.66 MHz, Unloaded Outputs			12	25	mA
V _{OH}	Output HIGH Voltage	– IOH = –24 mA –IOH = –12 mA	2.0 2.4			V
V _{OL}	Output LOW Voltage	-IOL = 24 mA -IOL = 12 mA			0.8 0.55	V
VIH	Input HIGH Voltage, IN and OE (Note 3)		2.0			V
V _{IL}	Input LOW Voltage, IN and OE (Note 3)				0.8	V
I _{IH}	Input HIGH Current, V _{IN} = V _{DD}		-50		50	μΑ
IIL	Input LOW Current, V _{IN} = 0 V		-100		100	μΑ
CIN	Input Capacitance, IN, OE			5	7	pF

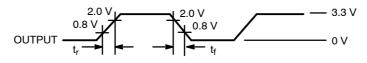
Table 5. DC CHARACTERISTICS V_{DD} = 3.0 V to 3.6 V, GND = 0 V, T_A = -40° C to $+85^{\circ}$ C

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

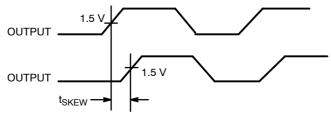
3. IN input has a threshold voltage of $V_{DD}/2$.

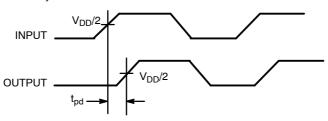

Symbol	Characteristic		Min	Тур	Max	Unit
f _{in}	Input Clock Frequency		DC		140	MHz
t _{DCskew}	kew Duty Cycle Skew = t2 ÷ t1 (Figure 4) Measured at 1.5 V		40	50	60	%
tr/tf	Output Rise and Fall Times; 0.8 V to 2.0 V	C _L = 25 pF C _L = 10 pF		0.9 0.6	1.5	ns
t _{pd}	Propagation Delay, IN-to-Qn (Note 5)		2.5	3.5	5	ns
t _{skew}	Output-to-Output Skew; (Note 5)				100	ps
t _{pu}	Powerup Time for V _{DD} to Reach Minimum Specified Vol	tage	0.05		50	ms

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.


4. All outputs loaded equally with C_L = 25 pF to GND. Duty cycle out = duty in. A 0.01 μ F decoupling capacitor should be connected between V_{DD} and GND.

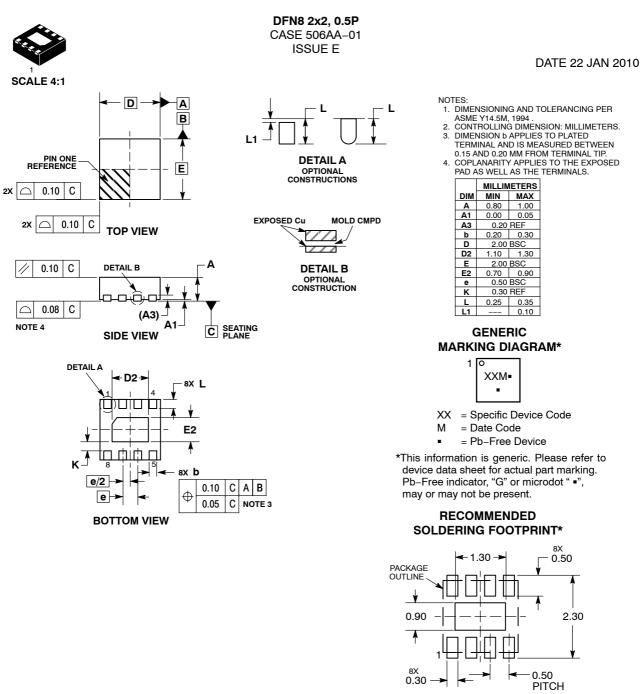
5. Measured on rising edges at V_{DD} ÷ 2; all outputs with equal loading.


NB3N2304NZ


All Outputs Rise/Fall Time

Output-Output Skew

Input-Output Propagation Delay



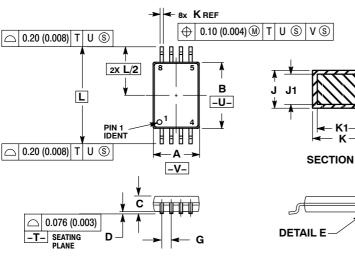
ORDERING INFORMATION

Device	Package	Shipping [†]
NB3N2304NZDTG	TSSOP-8 (Pb-Free)	100 Units / Rail
NB3N2304NZDTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel
NB3N2304NZMNR4G*	DFN8 (Pb-Free)	1000 / Tape & Reel

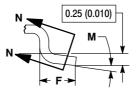
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *Contact a sales representative.

DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


DOCUMENT NUMBER:	98AON18658D Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION: DFN8, 2.0X2.0, 0.5MM PITCH PAGE 1 C			
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or icidental damages. ON Semiconductor does not convey any license under	or guarantee regarding circuit, and specifically

SCALE 2:1


TSSOP-8 CASE 948S-01 ISSUE C

DATE 20 JUN 2008

SECTION N-N

DETAIL E

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI

- VIMENSIONING AND TOLENANDING FER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH.
- PROTRUSION SHALL NOT EXCEED 0.15
 (0.006) PER SIDE.
 JIMENSION B DOES NOT INCLUDE INTERLEAD
 FLASH OR PROTRUSION. INTERLEAD FLASH OR
 PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
 DED SIDE.
- PER SIDE 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	4.30	4.50	0.169	0.177
C		1.10		0.043
D	0.05	0.15	0.002	0.006
F	0.50	0.70	0.020	0.028
G	0.65 BSC		0.026 BSC	
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40		0.252	BSC
М	0°	8°	0°	8°

GENERIC **MARKING DIAGRAM***

0	XXX	
	YWW	
	A •	
	•	

XXX = Specific Device Code А

- = Assembly Location
- = Year

Y

- WW = Work Week
- = Pb-Free Package -

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON00697D	Electronic versions are uncontrolled except when
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. Printe versions are uncontrolled except when stamped
NEW STANDARD:		"CONTROLLED COPY" in red.
DESCRIPTION:	TSSOP-8	PAGE 1 OF 2

DOCUMENT NUMBER: 98AON00697D

PAGE 2 OF 2

DATE 18 APR 2000 13 JAN 2006 3Y C. 13 MAR 2006 D 20 JUN 2008
13 JAN 2006 BY C. 13 MAR 2006
3Y C. 13 MAR 2006
D 20 JUN 2008

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

onsemi, OnSemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters, including "Typicals" must be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK854BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7 ADCLK905BCPZ-WP