NB3N3002

3.3V, Crystal to 25MHz, $100 \mathrm{MHz}, 125 \mathrm{MHz}$ and 200MHz HCSL Clock Generator

Description

The NB3N3002 is a precision, low phase noise clock generator that supports PCI-Express and Ethernet requirements. The device accepts a 25 MHz fundamental mode parallel resonant crystal and generates a differential HCSL output at $25 \mathrm{MHz}, 100 \mathrm{MHz}, 125 \mathrm{MHz}$ or 200 MHz clock frequencies. Outputs can interface with LVDS with proper termination (See Figure 5).

This device is housed in $5.0 \mathrm{~mm} \times 4.4 \mathrm{~mm}$ narrow body TSSOP 16 pin package.

Features

- Uses 25 MHz Fundamental Mode Parallel Resonant Crystal
- External Loop Filter is Not Required
- HCSL Differential Output or LVDS with Proper Termination
- For Selectable Multipliers of the Input Frequency
- Output Enable with Tri-State Outputs
- PCIe Gen1, Gen2, Gen3, Gen4, QPI, UPI Jitter Compliant
- Typical TIE RMS jitter of 2.5 ps
- Phase Noise: @ 100 MHz

Offset	Noise Power 100 Hz
-109.4 dBc	
1 kHz	-127.8 dBc
10 kHz	-136.2 dBc
100 kHz	-138.8 dBc
1 MHz	-138.2 dBc
10 MHz	-161.4 dBc
20 MHz	-163.00 dBc

- Operating Range $3.3 \mathrm{~V} \pm 5 \%$
- Industrial Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- These are $\mathrm{Pb}-$ Free Devices

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

Figure 1. NB3N3002 Simplified Logic Diagram

Figure 2. Pin Configuration (Top View)

Table 1. PIN DESCRIPTION

Pin	Symbol	I/O	Description		
1	Sel0	Input	LVTTL/LVCMOS frequency select input 0. Internal pullup resistor to V_{DD}. See output select table 2 for details.		
2	Sel1	Input	LVTTL/LVCMOS frequency select input 1. Internal pullup resistor to V_{DD}. See output select Table 2 for details.		
12,16	$\mathrm{~V}_{\mathrm{DD}}$	Power Supply	Positive supply voltage pins are connected to +3.3 V supply voltage.		
4	$\mathrm{X} 1 / \mathrm{CLK}$	Input	Crystal or Clock input. Connect to 25 MHz crystal source or single-ended clock.		
5	X 2	Input	Crystal input. Connect to a 25 MHz crystal or leave unconnected for clock input.		
6	OE	Input	Output enable tri-states output when connected to GND. Internal pullup resistor to V_{DD}.		
$3,7,8,13$	GND	Power Supply	Ground 0 V. These pins provide GND return path for the devices.		
9	$\mathrm{I}_{\mathrm{REF}}$	Output	Output current reference pin. Precision resistor (typ. 475 Ω) is connected from pin 9 to GND to set the output current.		
15	CLK	HCSL or LVDS Output	Noninverted clock output. (For LVDS levels see Figure 5)		
14	CLK	HCSL or LVDS Output	Inverted clock output. (For LVDS levels see Figure 5)		
10,11	NC				

Table 2. OUTPUT FREQUENCY SELECT TABLE WITH 25MHz CRYSTALS

SEL1 *	SEL0 $^{\boldsymbol{*}}$	CLK Multiplier	$\mathbf{f}_{\text {CLK }}$ (MHz)
L	L	1 x	25
L	H	4 x	100
H	L	5 x	125
H	H	8 x	200

*Pins SEL1 and SELO default high when left open.

Recommended Crystal Parameters

Crystal	Fundamental AT-Cut
Frequency	25 MHz
Load Capacitance	$16-20 \mathrm{pF}$
Shunt Capacitance, C0	7 pF Max
Equivalent Series Resistance	$50 \Omega \mathrm{Max}$
Initial Accuracy at $25^{\circ} \mathrm{C}$	$\pm 20 \mathrm{ppm}$
Temperature Stability	$\pm 30 \mathrm{ppm}$
Aging	$\pm 20 \mathrm{ppm}$

NB3N3002

Table 3. ATTRIBUTES

Characteristic	Value
ESD Protection	$>2 \mathrm{kV}$
RPU - OE, SEL0 and SEL1 Pull-up Resistor Body Model	$100 \mathrm{k} \Omega$
Moisture Sensitivity, Indefinite Time Out of Dry Pack (Note 1)	Level 1
Flammability Rating \quad Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	7623
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

1. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
$V_{\text {DD }}$	Positive Power Supply	GND $=0 \mathrm{~V}$		4.6	V
V_{1}	Input Voltage ($\mathrm{V}_{\text {IN }}$)	GND $=0 \mathrm{~V}$	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{DD}}$	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	V
$\mathrm{T}_{\text {A }}$	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	$\begin{aligned} & \hline \text { TSSOP-16 } \\ & \text { TSSOP-16 } \end{aligned}$	$\begin{aligned} & 138 \\ & 108 \end{aligned}$	$\begin{aligned} & \hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$\theta_{\text {JC }}$	Thermal Resistance (Junction-to-Case)	(Note 3)	TSSOP-16	33 to 36	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder			265	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
2. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and not valid simultaneously. If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected.
3. JEDEC standard multilayer board - 2S2P (2 signal, 2 power).

Table 5. DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Symbol	Characteristic	Min	Typ	Max	Unit
I_{DD}	Power Supply Current (Note 4)	65		95	mA
$\mathrm{I}_{\mathrm{DDOE}}$	Power Supply Current when OE is Set Low	35		65	mA
$\mathrm{~V}_{\text {IH }}$	Input HIGH Voltage (X1/CLK, Sel0, Sel1,and OE)	$0.7^{*} \mathrm{~V}_{\mathrm{DD}}$		$\mathrm{V}_{\mathrm{DD}}+300$	mV
V_{IL}	Input LOW Voltage (X1/CLK, Sel0, Sel1, and OE)	$\mathrm{GND}-300$		$0.3^{*} \mathrm{~V}_{\mathrm{DD}}$	mV
V_{OH}	Output HIGH Voltage (See Figure 4)	660	700	850	mV
V_{OL}	Output LOW Voltage (See Figure 4)	-150	0	150	mV
$\mathrm{V}_{\text {cross }}$	Crossing Voltage Magnitude (Absolute)	250		400	mV
$\Delta \mathrm{V}_{\text {cross }}$	Change in Magnitude of $\mathrm{V}_{\text {cross }}$			150	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
4. NB3N circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.
5. Measurement taken with outputs terminated with $R_{S}=33.2 \Omega, R_{L}=49.9 \Omega$, with load capacitance of 2 pF and current biasing resistor, $R_{R E F}$, from I IEF (Pin 9) to GND of 475Ω. See Figure 3.

NB3N3002

Table 6. AC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$; Note 7)

Symbol	Characteristic	Min	Typ	Max	Unit
${ }_{\text {f CLKIN }}$	Clock/Crystal Input Frequency		25		MHz
$\mathrm{f}_{\text {CLKout }}$	Output Clock Frequency	25		200	MHz
$\theta_{\text {NOISE }}$	Phase-Noise Performance $\quad \mathrm{f}_{\text {CLK }}=200 \mathrm{MHz} / 100 \mathrm{MHz}$				$\mathrm{dBc} / \mathrm{Hz}$
	@ 100 Hz offset from carrier		-103/-109		
	@ 1 kHz offset from carrier		-118/-127.8		
	@ 10 kHz offset from carrier		-122/-136.2		
	@ 100 kHz offset from carrier		-130/-138.8		
	@ 1 MHz offset from carrier		-138/-138.2		
	@ 10 MHz offset from carrier		-149/-164		
$\mathrm{t}_{\mathrm{jit}(\text { (})}$	RMS Phase Jitter (at 125 MHz @ $1 \mathrm{MHz}-40 \mathrm{MHz}$)		0.25	0.50	ps
$\mathrm{t}_{\mathrm{jitter}}$ (TIE)	TIE RMS Jitter (Note 8) $\quad \mathrm{f}_{\text {CLK }}=200 \mathrm{MHz}$		2.5		ps
	Cycle-to-Cycle RMS Jitter (Note 9) $\quad \mathrm{f}_{\text {CLK }}=200 \mathrm{MHz}$		2	5	
	Cycle-to-Cycle Peak to Peak Jitter (Note 9) $\quad \mathrm{f}_{\text {CLK }}=200 \mathrm{MHz}$		20	35	
	Period RMS Jitter (Note 9) $\quad \mathrm{f}_{\text {CLK }}=200 \mathrm{MHz}$		1.5	3	
	Period Peak-to-Peak Jitter (Note 9) \quad f ${ }_{\text {CLK }}=200 \mathrm{MHz}$		10	20	
OE	Output Enable/Disable Time			1.0	us
t ${ }_{\text {DUTY_CYCLE }}$	Output Clock Duty Cycle (Measured at cross point)	45	50	55	\%
t_{R}	Output Risetime (Measured from 175 mV to 525 mV , Figure 4)	175	340	700	ps
t_{F}	Output Falltime (Measured from 525 mV to 175 mV , Figure 4)	175	340	700	ps
Δt_{R}	Output Risetime Variation (Single-Ended)			125	ps
$\Delta \mathrm{t}_{\mathrm{F}}$	Output Falltime Variation (Single-Ended)			125	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
6. NB3N circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.
7. Measurement taken from differential output on single-ended channel terminated with $R_{S}=33.2 \Omega, R_{L}=49.9 \Omega$, with load capacitance of 2 pF and current biasing resistor, RREF, from IREF (Pin 9) to GND of 475Ω. See Figures 3 and 4 .
8. Sampled with 20000 cycles to capture jitter component down to 100 kHz .
9. Sampled with 20000 cycles.

Table 7. AC ELECTRICAL CHARACTERISTICS - PCI EXPRESS JITTER SPECIFICATIONS,
$V_{D D}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions (Notes 10 and 11)	Min	Typ	Max	Industry Limit	Unit
$\mathrm{t}_{\text {jphPCleG1 }}$	RMS Phase Jitter	PCle Gen 1 (Notes 12 and 13)		10	16	86	ps (p-p)
		PCle Gen 2 Lo Band $10 \mathrm{kHz}<\mathrm{f}<1.5 \mathrm{MHz}$ (Note 12)		0.2	0.25	3	$\begin{gathered} \mathrm{ps} \\ \text { (rms) } \end{gathered}$
$\mathrm{t}_{\text {jphPCleG2 }}$		PCle Gen 2 High Band 1.5 MHz $<f<$ Nyquist (50 MHz) (Note 12)		0.9	1.2	3.1	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$
$\mathrm{t}_{\text {jphPCleG3 }}$		PCle Gen 3 (PLL BW of $2-4 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz})$ (Note 12)		0.2	0.3	1	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$
$\mathrm{t}_{\text {jphPCleG4 }}$		PCle Gen 4 (PLL BW of $2-4 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz})$ $($ Note 12)		0.21	0.3	0.5	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$
$\mathrm{t}_{\text {jphUPI }}$		($9.6 \mathrm{~Gb} / \mathrm{s}, 10.4 \mathrm{~Gb} / \mathrm{s}$ or $11.2 \mathrm{~Gb} / \mathrm{s}, 100 \mathrm{MHz}, 12 \mathrm{UI}$)		0.62	0.7	1.0	$\underset{(\mathrm{rms})}{\mathrm{ps}}$
$\mathrm{t}_{\text {jphQPI_SMI }}$		QPI \& SMI (100.00 MHz or 133.33 MHz , $4.8 \mathrm{~Gb} / \mathrm{s}, 6.4 \mathrm{~Gb} / \mathrm{s} 12 \mathrm{UI}$) (Note 14)		0.1	0.3	0.5	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$
		QPI \& SMI $(100.00 \mathrm{MHz}, 8.0 \mathrm{~Gb} / \mathrm{s}, 12 \mathrm{UI})($ Note 14)		0.1	0.15	0.3	$\underset{(\mathrm{rms})}{\mathrm{ps}}$
		QPI \& SMI $(100.00 \mathrm{MHz}, 9.6 \mathrm{~Gb} / \mathrm{s}, 12 \mathrm{UI})($ Note 14)		0.07	0.1	0.2	$\underset{(\mathrm{rms})}{\mathrm{ps}}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
10. Applies to all outputs.
11. Guaranteed by design and characterization, not tested in production
12. See http://www.pcisig.com for complete specs
13. Sample size of at least 100 K cycles. This figures extrapolates to 108 ps pk-pk @ 1M cycles for a BER of 1-12.
14. Calculated from Intel-supplied Clock Jitter Tool v 1.6.3.

Figure 3. Typical Termination for Output Driver and Device Evaluation

Figure 4. HCSL Output Parameter Characteristics

Figure 5. HCSL Interface Termination to LVDS

ORDERING INFORMATION

Device	Package	Shipping †
NB3N3002DTG	TSSOP-16 (Pb-Free)	96 Units / Rail
NB3N3002DTR2G	TSSOP-16 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006

SCALE 2:1

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Phase Locked Loops - PLL category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
CPLL58-2400-2500 MB15E07SLPFV1-G-BND-6E1 PI6C2409-1HWEX BA4116FV-E2 HMC764LP6CETR HMC820LP6CETR CY22050KFI LMX2430TMX/NOPB NB3N5573DTG ADF4153ABCPZ PI6C2405A-1LE CD74HC4046AM CPLL66-2450-2450 NJM567D 74HC4046ADB. 112 74HC4046APW. 112 CY23S05SXI-1 STW81200T ADF4208BRUZ ADF4218LBRUZ ADF4355-3BCPZ ADF4355-2BCPZ ADF4355BCPZ ADF4169WCCPZ ADF4360-7BCPZ ADF4360-6BCPZ ADF4360-5BCPZRL7 ADF4360-5BCPZ ADF4360-4BCPZRL7 ADF4360-4BCPZ ADF4360-3BCPZ ADF4360-2BCPZRL7 ADF4252BCPZ ADF4159CCPZ ADF4169CCPZ ADF4252BCPZ-R7 ADF4360-0BCPZ ADF4360-1BCPZ ADF4360-1BCPZRL7 ADF4360-2BCPZ ADF4360-3BCPZRL7 ADF43607BCPZRL7 ADF4360-8BCPZ ADF4360-8BCPZRL7 ADF4360-9BCPZ ADF4360-9BCPZRL7 ADF4159CCPZ-RL7 ADF4159WCCPZ ADF4360-0BCPZRL7 AD9901KPZ

