NB3N3020

3.3 V, LVPECL/LVCMOS Clock Multiplier

Description

The NB3N3020 is a high precision, low phase noise selectable clock multiplier. The device takes a $5-27 \mathrm{MHz}$ fundamental mode parallel resonant crystal or a $2-210 \mathrm{MHz}$ LVCMOS single ended clock source and generates a differential LVPECL output and a single ended LVCMOS/LVTTL output at a selectable clock output frequency which is a multiple of the input clock frequency. Three tri-level (Low, Mid, High) LVCMOS/LVTTL single ended select pins set one of 26 possible clock multipliers. The LVCMOS/LVTTL output enable (OE1) tri-states the LVCMOS/LVTTL clock output (CLK1) when low. When the LVTTL/LVCMOS output enable (OE2) is LOW, LVPECL CLK2 is forced LOW and LVPECL $\overline{\text { CLK2 }}$ is forced HIGH.

This device is housed in $5 \mathrm{~mm} \times 4.4 \mathrm{~mm}$ narrow body TSSOP 16 pin package.

Features

- Selectable Clock Multiplier
- External Loop Filter is Not Required
- LVPECL Differential Output
- LVCMOS/ LVTTL Outputs
- RMS Period Jitter of 5 ps
- Jitter or Low Phase Noise at 125 MHz [25 MHz Input]:

Offset	Noise Power
100 Hz	$-95 \mathrm{dBc} / \mathrm{Hz}$
1 kHz	$-107 \mathrm{dBc} / \mathrm{Hz}$
10 kHz	$-112 \mathrm{dBc} / \mathrm{Hz}$
100 kHz	$-117 \mathrm{dBc} / \mathrm{Hz}$
1 MHz	$-117 \mathrm{dBc} / \mathrm{Hz}$
10 MHz	$-134 \mathrm{dBc} / \mathrm{Hz}$

- Operating Range $3.3 \mathrm{~V} \pm 10 \%$
- Industrial Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- These are $\mathrm{Pb}-$ Free Devices

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

TSSOP-16
DT SUFFIX
CASE 948F

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
-	$=$ Pb-Free Package

(*Note: Microdot may be in either location)

PIN CONFIGURATION

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Figure 1. NB3N3020 Simplified Logic Diagram

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Description
6	Sel0	Tri-Level Input	Frequency select input 0 . When left open, defaults to VDD/ 2. See output select Table 2 for details.
5	Sel1	Tri-Level Input	Frequency select input 1. When left open, defaults to VDD/ 2. See output select Table 2 for details.
4	Sel2	Tri-Level Input	Frequency select input 2. When left open, defaults to VDD/ 2. See output select Table 2 for details.
1,11,15	$V_{\text {DD }}$	Power Supply	Positive supply voltage pins are connected to +3.3 V supply voltage.
2	X1/CLK	Input	Crystal or Clock input. Connect to 5-27 MHz crystal source or $2-210 \mathrm{MHz}$ singleended clock. See Table 2.
3	X2	Input	Crystal input. Connect to a $5-27 \mathrm{MHz}$ crystal or leave unconnected for clock input. See Table 2.
7	OE1	LVTTL/LVCMOS Input	Output enable input that synchronously tri-states CLK1 output when low. Internal pull-up resistor to V_{DD}.
16	OE2	LVTTL/LVCMOS Input	Output enable input that when LOW synchronously controls LVPECL outputs by forcing CLK2 LOW and CLK2 HIGH. Internal pull-up resistor to V_{DD}.
8, 9, 12	GND	Power Supply	Ground 0 V . These pins provide GND return path for the devices.
13	CLK2	LVPECL Output	Inverted clock output. Clock frequency equals input frequency times multiplier.
14	CLK2	LVPECL Output	Non-inverted clock output. Clock frequency equals input frequency times multiplier.
10	CLK1	LVTTL/ LVCMOS Output	Clock Output. Clock frequency equals input frequency times multiplier.

Table 2. OUTPUT FREQUENCY CLOCK MULTIPLIER SELECT TABLE

Sel2	Sel1	Sel0	CLK1, CLK2, CLK2	Clock Input Range [MHz]	Crystal Input Range [MHz]
L	L	L	Low (Power Down)	-	-
L	L	M	Input X 1	25-210	25-27
L	L	H	Input $\mathrm{X} 4 / 3$ (or $11 / 3$)	15-157.5	15-27
L	M	L	Input X 1.5	10-140	10-27
L	M	M	1.6	25-131.25	25-27
L	M	H	Input X 1.875	40-112	-
L	H	L	Input X 2	25-105	25-27
L	H	M	Input $\mathrm{X} 7 / 3$ (or $21 / 3$)	15-90	15-27
L	H	H	Input X 2.4	25-87.5	25-27
M	L	L	Input X 2.5	10-84	10-27
M	L	M	Input $\mathrm{X} 8 / 3$ (or $22 / 3$)	15-78.75	15-27
M	L	H	Input X 3	15-70	15-27
M	M	L	Input X 3.125	40-67.20	-
M	M	M	Input X 3.2	25-65.63	25-27
M	M	H	Input X 10/3 (or $31 / 3$)	15-63	15-27
M	H	L	Input X 3.75	20-56	20-27
M	H	M	Input X 4	2-52.5	5-25
M	H	H	Input X 5	6-42	6-27
H	L	L	Input X 6	5-35	5-27
H	L	M	Input X 6.25	20-33.6	20-27
H	L	H	Input X 19/3 (or $61 / 3$)	15-33.16	15-27
H	M	L	Input X 8	5-26.25	5-26.25
H	M	M	Input X 25/3 (or $81 / 3$)	15-25.2	15-25.2
H	M	H	Input X 10	5-21	5-21
H	H	L	Input X 12	5-17.5	5-17.5
H	H	M	Input X 12.5	10-16.8	10-16.8
H	H	H	Input X 16	5-13.125	5-13.125

L - Low, M - Mid, H - High

Recommended Crystal Parameters

Crystal
Frequency
Load Capacitance
Shunt Capacitance, C0
Equivalent Series Resistance
Initial Accuracy at $25^{\circ} \mathrm{C}$
Temperature Stability
Aging
C0/C1 Ration

Fundamental AT-Cut
$5-27 \mathrm{MHz}$
$16-20 \mathrm{pF}$
7 pF Max
35Ω Max
$\pm 20 \mathrm{ppm}$
$\pm 30 \mathrm{ppm}$
$\pm 20 \mathrm{ppm}$
250 Max

Device Operation

The NB3N3020 is a Clock multiplier. The device can take crystal or clock input and generates LVPECL and LVCMOS/ LVTTL clock outputs which are multiples of the
input as determined by the tri-level select inputs [Sel0, Sel1, Sel2].

Clock Multiplication

NB3N3020 is a clock multiplier with the clock multiplier selected by the tri level select inputs [Sel0, Sel1, Sel2]. NB3N3020 has a LVTTL/LVCMOS output [CLK1] and a LVPECL clock output [CLK2, $\overline{\text { CLK2 }}$].

Output Enable

The device has an output enable [OE] which is used to tri-state the outputs. OE1 controls the CLK1 clock output where as OE2 controls the CLK2, $\overline{\text { CLK2 }}$ clock outputs. When OE1or OE2 are disabled, the respective clock output(s) are tri-stated. In this mode of operation, PLL is still running, with the respective clock outputs tri-stated. When the OE1 or OE2 are enabled, the clock outputs
become active synchronous to the internal PLL output clock and do not create any glitches or runt pulses during the transition. In power down mode, the outputs are tri-stated regardless of the state of the OE1, OE2.

The device has an output enable [OE1] which accepts LVTTL/LVCMOS levels and when set LOW will disable the LVTTL/LVCMOS level CLK1 to tri-state. Output enable OE2 accepts LVTTL/LVCMOS levels to disable the LVPECL level outputs by forcing CLK2 LOW and CLK2b HIGH. When OE1 or OE2 are set LOW (Disabled), the PLL remains running while the respective clock outputs are disabled. When the OE1 or OE2 are set enabled (HIGH), the clock outputs become active synchronous to the internal PLL output clock and will not create any glitches or runt pulses during the transition. Both OE1 and OE2 inputs have pull-up resistors which default to VDD when floated open. In power down mode, the outputs are tri-stated (zero current) regardless of the state of the OE1, OE2.

Changing Clock Multiplier

The clock output frequency can be dynamically changed using Sel0, Sel1, Sel2 pins. When the clock frequency is changed, the clock outputs move from one frequency to another and the PLL locks to the new frequency within a settling time of 3 msec . There is no glitch during this transition when the clock outputs are active \{not tri-stated by OE1, OE2\}.

Crystal/ Clock Input

The device takes in a $5-27 \mathrm{MHz}$ crystal input or $2-$ 210 MHz clock input. Once powered up, the input frequency is fixed and should not be changed dynamically. The input cannot accept a spread spectrum clock and needs a fixed frequency clock for device operation. The input frequencies for clock and crystal input for specific multipliers are determined by Table 3.

Power Up

When the NB3N3020 is powered up, it takes 10 msec for the PLL's to stabilize and lock to the desired frequency of operation as selected by Sel0, Sel1, Sel2. During this time period, there may be glitches in the clock outputs.

Power Down:

The device can be powered down when the Sel0, Sel1, Sel2 pins are all connected to GND. In this mode of operation, PLL is turned off and the device consumes less than 5 mA of current. There may be a glitch in clock outputs when the device is powering down. In power down mode, the outputs are tri-stated regardless of the state of the OE1, OE2.

In the cases where the application requires glitch-less transitions, in order to avoid glitches it is recommended to use synchronous OE signaling to mask glitches to the clock outputs.

Table 3. ATTRIBUTES

Characteristics	Value
ESD Protection \quad Human Body Model	2 kV
Moisture Sensitivity, Indefinite Time Out of Dry pack (Note 1)	Level 1
Flammability Rating \quad Oxygen Index: 28 to 34	UL $94 \mathrm{~V}-0$ @ 0.125 in
Transistor Count	8287 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

1. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{DD}	Positive Power Supply	$\mathrm{GND}=0 \mathrm{~V}$		4.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage (VIN)	$\mathrm{GND}=0 \mathrm{~V}$	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{DD}}$	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	V
$\mathrm{I}_{\text {out }}$	LVPECL Output Current	Continuous Surge		25	
50	mA				
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 Ifpm	$\mathrm{TSSOP}-16$ $\mathrm{TSSOP}-16$	138 108	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JC}	Thermal Resistance (Junction-to-Case)	(Note 3)	TSSOP-16	33 to 36	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder			265	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
2. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and not valid simultaneously. If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected.
3. JEDEC standard multilayer board - 2S2P (2 signal, 2 power).

Table 5. DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Symbol	Characteristic	Min	Typ	Max	Unit
V_{DD}	Power Supply Voltage	2.97	3.3	3.63	V
I_{DD}	Power Supply Current (Note 4)		60	75	mA
$\mathrm{I}_{\mathrm{DDOE}}$	Power Supply Current when OE1, OE2 is Set Low		50		mA
$\mathrm{I}_{\mathrm{DDOFF}}$	Power Supply Current when PLL is powered off by Sel0, Sel1, Sel2			5	mA
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Voltage (X1/CLK, OE1, OE2)	2000		$\mathrm{~V}_{\mathrm{DD}}+300$	mV
V_{IL}	Input LOW Voltage (X1/CLK, OE1, OE2)	$\mathrm{GND}-300$		800	mV
V_{IH}	Input HIGH Voltage (Sel0, Sel1, Sel2)	$0.72 \mathrm{~V}_{\mathrm{DD}}$		$\mathrm{V}_{\mathrm{DD}}+300$	mV
V_{IL}	Input LOW Voltage (Sel0, Sel1, Sel2)	$\mathrm{GND}-300$		800	mV
V_{IM}	Input Mid Voltage (Sel0, Sel1, Sel2) (When left open, defaults to $\mathrm{V}_{\mathrm{DD}} / 2$		$\mathrm{~V}_{\mathrm{DD}} / 2$		mV
V_{OH}	Output HIGH Voltage for CLK2, CLK2 (See Figure 3)	$\mathrm{V}_{\mathrm{DD}}-1.145$		$\mathrm{~V}_{\mathrm{DD}}-0.895$	V
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Voltage for CLK2, CLK2 (See Figure 3)	$\mathrm{V}_{\mathrm{DD}}-2.090$		$\mathrm{~V}_{\mathrm{DD}}-1.600$	V
$\mathrm{~V}_{\mathrm{OH}}$	Output HIGH Voltage for CLK1 [loH $=-12 \mathrm{~mA}]$	2.4			V
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Voltage for CLK1 [loL $=12 \mathrm{~mA}]$			0.4	V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
4. Measurement taken at FCLK $_{\text {out }}=125 \mathrm{MHz}$ with LVPECL and LVCMOS/ LVTTL outputs not terminated.

Table 6. AC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ (Note 5)

Symbol	Characteristic	Min	Typ	Max	Unit
${ }_{\text {f CLKIN }}$	Crystal Input Frequency	5.0		27	MHz
$\mathrm{f}_{\text {CLKIN }}$	Clock Input Frequency	2.0		210	MHz
f CLKOUT	Output Clock Frequency			210	MHz
$\Phi_{\text {NOISE }}$	Phase-Noise Performance (fclKout $=125 \mathrm{MHz}, 25 \mathrm{MHz}$ input) @ 100 Hz offset from carrier				
			-95		$\mathrm{dBc} / \mathrm{Hz}$
	@ 100 Hz offset from carrier @ 1 kHz offset from carrier		-107		dBc/Hz
	@ 10 kHz offset from carrier		-112		dBc/Hz
	@ 100 kHz offset from carrier		-117		dBc/Hz
	@ 1 MHz offset from carrier		-117		dBc/Hz
	@ 10 MHz offset from carrier		-134		dBc/Hz
Tjitter p-p	Cycle-to-Cycle Jitter peak to peak (Note 6) $\mathrm{f}_{\text {CLKout }}=100 \mathrm{MHz}$ and 125 MHz , 25 MHz input		20	36	ps
Tjitter rms	Cycle-to-Cycle Jitter rms (Note 7) $\mathrm{f}_{\text {CLKout }}=100 \mathrm{Mhz}$ and $125 \mathrm{MHz}, 25 \mathrm{MHz}$ input		5.0	9.0	ps
Tjitter p-p	Period Jitter peak to peak (Note 7) $\mathrm{f}_{\mathrm{CLKout}}=100 \mathrm{MHz}$ and $125 \mathrm{MHz}, 25 \mathrm{MHz}$ input		15	20	ps
Tjitter rms	Period Jitter rms (Note 7) $\mathrm{f}_{\mathrm{CLKout}}=100 \mathrm{MHz}$ and $125 \mathrm{MHz}, 25 \mathrm{MHz}$ input		3.0	5.0	ps
	Start up time from power up		10		ms
OE	Output Enable/Disable Time		10		us
	PLL settling time		3		ms
t ${ }_{\text {DUTY_CYCLE }}$	Output Clock Duty Cycle (Measured at cross point for LV PECL clock output and VDD/2 for LVCMOS/ LVTTL clock output)	45	50	55	\%
t_{R}	Output Rise Time (Note 5) (Measured from 20\% to 80\%. Figure 2) LV PECL Output		340	700	ps
t_{F}	Output Fall Time (Note 5) (Measured from 20\% to 80\%. Figure 2) LV PECL Output		340	700	ps
t_{R}	Output Rise Time (Measured from 0.8 to 2 V , no load) LVCMOS/ LV TTL Output			1500	ps
t_{F}	Output Fall Time (Measured from 2.0 V to 0.8 V , no load) LVCMOS/ LV TTL Output			1500	ps
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	Input Rise time/ Fall time for LV CMOS/ LV TTL clock input [X1/CLK]	0		1500	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
5. Measurement taken with outputs terminated with 50Ω to $\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$. See Figure 2.
6. Sampled with 1000 cycles
7. Sampled with 10000 cycles

Figure 2. Typical Termination for Output Driver for Device Evaluation

Figure 3. LV-PECL Output Parameter Characteristics

ORDERING INFORMATION

Device	Package	Shipping †
NB3N3020DTG	TSSOP-16 (Pb-Free)	96 Units / Rail
NB3N3020DTR2G	TSSOP-16 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006

SCALE 2:1

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multipliers/Dividers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74AHC1G4210GWH AD632ADZ AD632AHZ AD632BHZ AD834AQ AD834JNZ AD835ANZ ADL5391ACPZ-R7 AD835ARZ
AD834JRZ AD633TRZ-EP AD633TRZ-EP-R7 MC100EP32MNR4G PDW05758 PDW07691-T PDW07691 W/P 5 pcs PDW06399-T
PDW08323 PDW08324 74AHC1G4214GW-Q10H MC100EP32DG MC100EP32DTG MC100EP33DG MC100EP33DTG MC10EP32DG
MC10EP32DTG MC10EP32DTR2 MC10EP33DG MC10EP33DTG MC14521BDG MC14521BDR2G NB3N3020DTG MC10EP32DR2G
CD4521BM96 CD4527BE SN7497N SN74LS292N SN74LS294N MC100EP33DTR2G MC100EP32DTR2G 74AHC1G4212GWH $\underline{\text { PDW07069 CD4089BE CD4089BNSR CD4089BPWR CD4521BE CD4521BEE4 CD4521BM CD4521BNSR CD4521BPW }}$

