Dual HCSL/LVDS Clock Generator, 3.3 V, Crystal to 25 MHz, 100 MHz, 125 MHz and 200 MHz

NB3N51032
The NB3N51032 is a precision, low phase noise clock generator that supports PCI Express and Ethernet requirements. The device accepts a 25 MHz fundamental mode parallel resonant crystal and generates a differential HCSL output at $25 \mathrm{MHz}, 100 \mathrm{MHz}, 125 \mathrm{MHz}$ or 200 MHz clock frequencies. Outputs can interface with LVDS with proper termination (See Figure 10). The NB3N51032 provides selectable spread options of -0.5% and -0.75% for applications demanding low Electromagnetic Interference (EMI) as well as optimum performance with no spread option.

Features

- Uses 25 MHz Fundamental Mode Parallel Resonant Crystal
- External Loop Filter is Not Required
- HCSL Differential Output or LVDS with Proper Termination
- Four Selectable Multipliers of the Input Frequency
- Output Enable with Tri-State Outputs
- PCIe Gen 1, Gen 2, Gen 3, Gen 4 Compliant
- Spread of $-0.5 \%,-0.75 \%$ and No Spread
- Phase Noise: @ 100 MHz

Offset	Noise Power
100 Hz	$-88 \mathrm{dBc} / \mathrm{Hz}$
1 kHz	$-118 \mathrm{dBc} / \mathrm{Hz}$
10 kHz	$-131 \mathrm{dBc} / \mathrm{Hz}$
100 kHz	$-132 \mathrm{dBc} / \mathrm{Hz}$
1 MHz	$-144 \mathrm{dBc} / \mathrm{Hz}$
10 MHz	$-155 \mathrm{dBc} / \mathrm{Hz}$

- Typical Period Jitter RMS of 1.5 ps
- Operating Supply Voltage Range $3.3 \mathrm{~V} \pm 5 \%$
- Industrial Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Functionally Compatible with IDT557-03,

IDT5V41065, IDT5V41235 with enhanced performance

- These are Pb -Free Devices

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- $\quad=\mathrm{Pb}-F r e e ~ P a c k a g e ~$
(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information on page 11 of this data sheet.

Applications

- Networking
- Consumer
- Computing and Peripherals
- Industrial Equipment
- PCIe Clock Generation Gen 1, Gen 2, Gen 3 and Gen 4
- Gigabit Ethernet
- FB DIMM

End Products

- Switch and Router
- Set Top Box, LCD TV
- Servers, Desktop Computers
- Automated Test Equipment

Figure 1. NB3N51032 Simplified Logic Diagram

NB3N51032

	${ }^{1} \bigcirc$	16		
So \square				VDDXD
S1		15		CLKO
SSO \square	3	14	-	CLKO
X1/CLK \square	4	13	\square	GNDODA
X2	5	12	-	VDDODA
OE	6	11		CLK1
		1		CLK1
GNDXD \square	7	10		CLK1
SS1	8	9	\square	IREF

Figure 2. Pin Configuration (Top View)

Table 1. PIN DESCRIPTION

Pin	Symbol	I/O	Description
1	S0	Input	LVTTL/LVCMOS frequency select input 0. Internal pullup resistor to VDDXD. See output select table 2 for details.
2	S1	Input	LVTTL/LVCMOS frequency select input 1. Internal pullup resistor to VDDXD. See output select Table 2 for details.
3	SS0	Input	LVTTL/LVCMOS Spread select input 0. Internal pullup resistor to VDDXD. See Spread selection Table 3 for details.
4	X1/CLK	Input	Crystal or Clock input. Connect to 25 MHz crystal source or single-ended clock.
5	X2	Input	Crystal input. Connect to a 25 MHz crystal or leave unconnected for clock input.
6	OE	Input	Output enable. Tri-state output (High = enable outputs, Low = disable outputs). Internal pull-up resistor to VDDXD
7	GNDXD	Power Supply	Ground 0 V . This pin provides GND return path for the device.
8	SS1	Input	LVTTL/LVCMOS Spread select input 1. Internal pullup resistor to VDDXD. See Spread selection Table 3 for details.
9	IREF	Output	Output current reference pin. Precision resistor (typ. 475Ω) is connected to set the output current.
10	CLK1	HCSL or LVDS Output	Inverted clock output. (For LVDS levels see Figure 10)
11	CLK1	HCSL or LVDS Output	Noninverted clock output. (For LVDS levels see Figure 10)
12	VDDODA	Power Supply	Positive supply voltage pin connected to +3.3 V supply voltage.
13	GNDODA	Power Supply	Ground 0 V . These pins provide GND return path for the devices.
14	CLKO	HCSL or LVDS Output	Inverted clock output. (For LVDS levels see Figure 10)
15	CLKO	HCSL or LVDS Output	Noninverted clock output. (For LVDS levels see Figure 10)
16	VDDXD	Power Supply	Positive supply voltage pin connected to +3.3 V supply voltage.

NB3N51032

Table 2. OUTPUT FREQUENCY SELECT TABLE WITH 25MHz CRYSTAL

S1 $^{\boldsymbol{*}}$	S0 $^{\boldsymbol{*}}$	CLK Multiplier	$\mathbf{f C L K o u t ~}^{\mathbf{(M H z})}$
L	L	1 x	25
L	H	4 x	100
H	L	5 x	125
H	H	8 x	200

*Pins S1 and S0 default high when left open.

Recommended Crystal Parameters

Crystal
Frequency
Load Capacitance
Shunt Capacitance, C0
Equivalent Series Resistance
Initial Accuracy at $25^{\circ} \mathrm{C}$
Temperature Stability
Aging

Fundamental AT-Cut 25 MHz
$16-20 \mathrm{pF}$
7 pF Max
50Ω Max
$\pm 20 \mathrm{ppm}$
$\pm 30 \mathrm{ppm}$
$\pm 20 \mathrm{ppm}$

Table 3. SPREAD SELECTION TABLE

SS1 *	SS0 *	Spread\%	Spread Type
0	0	No Spread	N/A
0	1	-0.5	Down
1	0	-0.75	Down
1	1	No Spread	N/A

*Pins S1 and S0 default high when left open.

Table 4. ATTRIBUTES

Characteristic	Value
ESD Protection \quad Human Body Model	2 kV
Pull-up Resistor (Pins OE, S0, S1, SS0 and SS1)	$50 \mathrm{k} \Omega$
Moisture Sensitivity, Indefinite Time Out of Dry Pack (Note 1)	Level 1
Flammability Rating \quad Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	132000
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

1. For additional information, see Application Note AND8003/D.

Table 5. MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Rating	Unit
V_{DD}	Positive Power Supply with respect to GND (VDDXD and VDDODA)	4.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage with respect to GND (VIN)	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 3)	74 500 lfpm	64
θ_{JC}	Thermal Resistance (Junction-to-Case)	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder		${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
2. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and not valid simultaneously. If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected.
3. JEDEC standard multilayer board -2S2P (2 signal, 2 power).

Table 6. DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%\right.$, $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 4)

Symbol	Characteristic	Min	Typ	Max	Unit
V_{DD}	Power Supply Voltage (VDDXD and VDDODA)	3.135	3.3	3.465	V
GND	Power Supply Ground (GNDXD and GNDODA)		0		V
I_{DD}	Power Supply Current, 200 MHz Output, -0.75\% spread		100		mA
$\mathrm{I}_{\mathrm{DDOE}}$	Power Supply Current when OE is Set Low		55		mA
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Voltage (X1/CLK, S0, S1, SSO, SS1 and OE)	2000		$\mathrm{~V}_{\mathrm{DD}}+300$	mV
V_{IL}	Input LOW Voltage (X1/CLK, S0, S1, SSO, SS1 and OE)	$\mathrm{GND}-300$		800	mV
V_{OH}	Output HIGH Voltage for HCSL Output (Note 5)	660		850	mV
V_{OL}	Output LOW Voltage for HCSL Output (Note 5)	-150	0		mV
$\mathrm{V}_{\text {cross }}$	Crossing Voltage Magnitude (Absolute) for HCSL Output (Notes 6 and 7)	250		550	mV
$\Delta \mathrm{V}_{\text {cross }}$	Change in Magnitude of $\mathrm{V}_{\text {cross }}$ for HCSL Output (Notes 6 and 8)			150	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
4. VDDXD and VDDODA power pins must be shorted to power supply voltage $V_{D D}$ and GNDXD and GNDODA ground pins must be shorted to power supply ground GND. Measurement taken with outputs terminated with $R_{S}=33.2 \Omega, R_{L}=49.9 \Omega$, with test load capacitance of 2 pF and current biasing resistor set at 475Ω. See Figure 9. Guaranteed by characterization.
5. Measurement taken from single-ended waveform.
6. Measured at crossing point where the instantaneous voltage value of the rising edge of CLKx+ equals the falling edge of CLKx-.
7. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.
8. Defined as the total variation of all crossing voltage of rising CLKx+ and falling CLKx-. This is maximum allowed variance in the $\mathrm{V}_{\text {CROss }}$ for any particular system.

Table 7. AC CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; Note 9)

Symbol	Characteristic	Min	Typ	Max	Unit
$\mathrm{f}_{\text {CLKIN }}$	Clock/Crystal Input Frequency		25		MHz
$\mathrm{f}_{\text {CLKOUT }}$	Output Clock Frequency	25		200	MHz
$\Phi_{\text {NOISE }}$	$f_{\text {CLKOUT }}=100 \mathrm{Mhz}$ @ 100 Hz offset from carrier @ 1 kHz offset from carrier @ 10 kHz offset from carrier @ 100 kHz offset from carrier @ 1 MHz offset from carrier @ 10 MHz offset from carrier		$\begin{gathered} -88 \\ -118 \\ -131 \\ -132 \\ -144 \\ -155 \end{gathered}$		$\mathrm{dBc} / \mathrm{Hz}$
$\mathrm{t}_{\text {IITTER }}$	Period Jitter Peak-to-Peak (Note 10) fCLKOUT $=200 \mathrm{Mhz}$ Period Jitter RMS (Note 10) fCLKOUT $=200 \mathrm{MHz}$ Cycle-Cycle RMS Jitter (Note 11) fCLKOUT $=200 \mathrm{MHz}$ Cycle-to-Cycle Peak to Peak Jitter (Note 11) f CLKOUT $^{2}=200 \mathrm{MHz}$		$\begin{aligned} & 10 \\ & 1.5 \\ & 2.0 \\ & 20 \end{aligned}$	$\begin{aligned} & \hline 20 \\ & 3.0 \\ & 5.0 \\ & 35 \end{aligned}$	ps
$\mathrm{t}_{\text {JIT (}}$ (${ }^{\text {a }}$	Phase RMS Jitter, Integration Range 12 kHz to 20 MHz		0.5		ps
$\mathrm{f}_{\text {MOD }}$	Spread Spectrum Modulation Frequency	30	31.5	33	kHz
SSC RED	Spectral Reduction, fCLKOUT of 100 MHz with -0.5% spread, $3^{\text {rd }}$ Harmonic (Note 12)		-10		dB
tskEw	Within Device Output to Output Skew			40	ps
Eppm	Frequency Synthesis Error, All Outputs		0		ppm
tspread	Spread Spectruction Transition Time (Stablization Time After Spread Spectrum Changes)	7		30	ms
$\mathrm{t}_{\text {OE }}$	Output Enable/Disable Time (Note 13)			10	us
touty_CYCLE	Output Clock Duty Cycle (Measured at cross point)	45	50	55	\%
t_{R}	Output Risetime (Measured from 175 mV to 525 mV , Figure 11)	175		700	ps
t_{F}	Output Falltime (Measured from 525 mV to 175 mV , Figure 11)	175		700	ps
$\Delta \mathrm{t}_{\mathrm{R}}$	Output Risetime Variation (Single-Ended)			125	ps
$\Delta \mathrm{t}_{\mathrm{F}}$	Output Falltime Variation (Single-Ended)			125	ps
Stabilization Time	Stabilization Time From Powerup $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$		3.0		ms

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.
9. VDDXD and VDDODA power pins must be shorted to power supply voltage $V_{D D}$ and GNDXD and GNDODA ground pins must be shorted to power supply ground GND. Measurement taken from differential output on single-ended channel terminated with $R_{S}=33.2 \Omega, R_{L}=49.9$ Ω, with test load capacitance of 2 pF and current biasing resistor set at 475Ω. See Figure 9 . Guaranteed by characterization.
10. Sampled with 10000 cycles.
11. Sampled with 1000 cycles.
12. Spread spectrum clocking enabled.
13. Output pins are tri-stated (Output disabled) when OE is asserted LOW. Output pins are driven differentially when OE is HIGH.

Table 8. AC ELECTRICAL CHARACTERISTICS - PCI EXPRESS JITTER SPECIFICATIONS,
$V_{D D}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min	Typ	Max	PCle Industry Spec	Unit
tj (PCle Gen 1)	Phase Jitter Peak-to-Peak (Notes 15 and 18)	$\begin{gathered} \mathrm{f}=100 \mathrm{MHz}, 25 \mathrm{MHz} \text { Crystal } \\ \text { Input Evaluation Band: } \\ 0 \mathrm{~Hz} \text { - Nyquist (clock } \\ \text { frequency/2) } \end{gathered}$	SSOFF		10	20	86	pS
			$\begin{aligned} & \hline \text { SSON } \\ & (-0.5 \%) \end{aligned}$		19	28		
tREFCLK_HF_RMS (PCle Gen 2)	Phase Jitter RMS (Notes 16 and 18)	$\begin{gathered} \mathrm{f}=100 \mathrm{MHz}, 25 \mathrm{MHz} \text { Crystal } \\ \text { Input High Band: } \\ 1.5 \mathrm{MHz} \text { - Nyquist (clock } \\ \text { frequency/2) } \end{gathered}$	SSOFF		1.0	1.8	3.1	pS
			$\begin{aligned} & \hline \text { SSON } \\ & (-0.5 \%) \end{aligned}$		1.1	1.9		
tREFCLK LF_RMS (PCle Gen 2) (PCle Gen 2)	Phase Jitter RMS (Notes 16 and 18)	$\mathrm{f}=100 \mathrm{MHz}, 25 \mathrm{MHz}$ Crystal Input Low Band: $10 \mathrm{kHz}-1.5 \mathrm{MHz}$	SSOFF		0.1	0.15	3	pS
			$\begin{aligned} & \hline \text { SSON } \\ & (-0.5 \%) \end{aligned}$		0.8	1.1		
tREFCLK_RMS (PCle Gēn 3)	Phase Jitter RMS (Notes 17 and 18)	$\mathrm{f}=100 \mathrm{MHz}, 25 \mathrm{MHz}$ Crystal Input Evaluation Band: 0 Hz Nyquist (clock frequency/2)	SSOFF		0.35	0.7	1	pS
			$\begin{gathered} \hline \text { SSON } \\ (-0.5 \%) \end{gathered}$		0.55	0.8		
tREFCLK_RMS (PCle Gen 4)	Phase Jitter RMS (Notes 17 and 18)	$\mathrm{f}=100 \mathrm{MHz}$, 25 MHz Crystal Input Evaluation Band: 0 Hz - Nyquist (clock frequency/2)	SSOFF		0.35	0.5	0.5	ps

14. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.
15. Peak-to-Peak jitter after applying system transfer function for the Common Clock Architecture. Maximum limit for PCI Express Gen 1 is 86 ps peak-to-peak for a sample size of 10^{6} clock periods.
16. RMS jitter after applying the two evaluation bands to the two transfer functions defined in the Common Clock Architecture and reporting the worst case results for each evaluation band. Maximum limit for PCI Express Generation 2 is 3.1 ps RMS for $t_{\text {REFCLK_HF_RMS (High Band) }}$ and 3.0 ps RMS for trefchk lf RMS (Low Band).
17. RMS jitter after applying system transfer function for the common clock architecture.
18. VDDXD and VDDODA power pins must be shorted to power supply voltage $V_{D D}$ and GNDXD and GNDODA ground pins must be shorted to power supply ground GND. Measurement taken from differential output on single-ended channel terminated with $R_{S}=33.2 \Omega, R_{L}=50 \Omega$, with test load capacitance of 2 pF and current biasing resistor set at 475Ω. See Figure 11 . This parameter is guaranteed by characterization. Not tested in production.

NB3N51032

PHASE NOISE

OFFSET FREQUENCY (Hz)
Figure 3. Typical Phase Noise Plot at 25 MHz; (fclkin $=25 \mathrm{MHz}$ Crystal , fclkout $=\mathbf{2 5}$ MHz SS OFF, RMS Phase Jitter for Integration Range 12 kHz to $20 \mathrm{MHz}=554 \mathrm{fs}$, Output Termination = HCSL type)

OFFSET FREQUENCY (Hz)
Figure 4. Typical Phase Noise Plot at 100 MHz ; (fclkin $=\mathbf{2 5} \mathrm{MHz}$ Crystal , $\mathrm{f}_{\text {Clkout }}=100 \mathrm{MHz}$ SS OFF, RMS Phase Jitter for Integration Range 12 kHz to $20 \mathrm{MHz}=456 \mathrm{fs}$, Output Termination = HCSL type)

NB3N51032

PHASE NOISE

Figure 5. Typical Phase Noise Plot at 125 MHz; (fCLKIN $=25 \mathrm{MHz}$ Crystal , f $\mathrm{f}_{\text {Clkout }}=125 \mathrm{MHz}$ SS OFF, RMS Phase Jitter for Integration Range 12 kHz to $20 \mathrm{MHz}=480 \mathrm{fs}$, Output Termination = HCSL type)

OFFSET FREQUENCY (Hz)
Figure 6. Typical Phase Noise Plot at 200 MHz ; (fclkin $=25 \mathrm{MHz}$ Crystal , f $\mathrm{f}_{\text {Clkout }}=200 \mathrm{MHz}$ SS OFF, RMS Phase Jitter for Integration Range 12 kHz to 20 MHz = 497 fs, Output Termination = HCSL type)

APPLICATION INFORMATION

Crystal Input Interface

Figure 7 shows the NB3N51032 device crystal oscillator interface using a typical parallel resonant crystal. The device crystal connections should include pads for small capacitors from X1 to ground and from X2 to ground. These capacitors, C_{1} and C_{2}, need to consider the stray capacitances of the board and are used to match the nominally required crystal load capacitance C_{L}. A parallel crystal with loading capacitance $\mathrm{C}_{\mathrm{L}}=18 \mathrm{pF}$ would use $\mathrm{C}_{1}=26 \mathrm{pF}$ and $\mathrm{C}_{2}=26 \mathrm{pF}$
as nominal values, assuming approximately 2 pF of stray capacitance per trace and approximately 8 pF of internal capacitance.
$\mathrm{C}_{\mathrm{L}}=\left(\mathrm{C}_{1}+\mathrm{C}_{\text {stray }}+\mathrm{C}_{\text {in }}\right) / 2 ; \mathrm{C}_{1}=\mathrm{C}_{2}$
The frequency accuracy and duty cycle skew can be fine-tuned by adjusting the C_{1} and C_{2} values. For example, increasing the C_{1} and C_{2} values will reduce the operational frequency.

Figure 7. Crystal Interface Loading

Power Supply Filter

In order to isolate the NB3N51032 from system power supply, noise decoupling is required. The $10 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ cap from supply pins to GND decoupling capacitor has to be connected between V_{DD} (pins 12 and 16) and GND (pins 7 and 13). It is recommended to place decoupling capacitors
as close as possible to the device to minimize lead inductance.

Termination

The output buffer structure is shown in the Figure 8.

Figure 8. Simplified Output Structure

The outputs can be terminated to drive HCSL receiver (see Figure 9) or LVDS receiver (see Figure 10). HCSL output interface requires 49.9Ω termination resistors to GND for generating the output levels. LVDS output
interface may not require the 100Ω near the LVDS receiver if the receiver has internal 100Ω termination. An optional series resistor R_{L} may be connected to reduce the overshoots in case of impedance mismatch.

HCSL INTERFACE

Figure 9. Typical Termination for Output Driver and Device Evaluation

LVDS COMPATIBLE INTERFACE

Figure 10. Typical Termination for LVDS Device Load

NB3N51032

Figure 11. HCSL Output Parameter Characteristics

ORDERING INFORMATION

Device	Package	Shipping †
NB3N51032DTG	TSSOP-16 (Pb-Free)	96 Units / Rail
NB3N51032DTR2G	TSSOP-16 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006

SCALE 2:1

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Generators \& Support Products category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
CV183-2TPAG 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H515001MNTXG PL602-20-K52TC PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 ZL30673LFG7 MAX24188ETK2 ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE CY2542QC002 5P35023-106NLGI 5X1503L-000NLGI8 ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 DS1070K ZL30145GGG2 ZL30312GKG2 MAX24405EXG2 ZL30237GGG2 SY100EL34LZG 9FGV1002BQ506LTGI AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-0BCPZ-REEL7 AD9574BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1 ZL30142GGG2 ZL30250LDG1

