## NB3N51034

### 3.3V, Crystal to 100MHz/ 200MHz Quad HCSL/LVDS Clock Generator

The NB3N51034 is a high precision, low phase noise clock generator that supports spread spectrum designed for PCI Express applications. This device takes a 25 MHz fundamental mode parallel resonant crystal and generates 4 differential HCSL/LVDS outputs at 100 MHz or 200 MHz (See Figure 8 for LVDS interface). The NB3N51034 provides selectable spread options of $-0.5 \%,-1.0 \%,-1.5 \%$, for applications demanding low Electromagnetic Interference (EMI) as well as optimum performance with no spread option.

## Features

- Uses 25 MHz Fundamental Mode Parallel Resonant Crystal
- Power Down Mode
- 4 Low Skew HCSL or LVDS Outputs
- OE Tri-States Outputs
- Spread of $-0.5 \%,-1.0 \%,-1.5 \%$ and No Spread
- PCIe Gen 1, Gen 2, Gen 3, Gen 4 Compliant
- Phase Noise (SS OFF) @ 100 MHz :

| Offset | Noise Power |
| :--- | :--- |
| 100 Hz | $-110 \mathrm{dBc} / \mathrm{Hz}$ |
| 1 kHz | $-123 \mathrm{dBc} / \mathrm{Hz}$ |
| 10 kHz | $-134 \mathrm{dBc} / \mathrm{Hz}$ |
| 100 kHz | $-137 \mathrm{dBc} / \mathrm{Hz}$ |
| 1 MHz | $-138 \mathrm{dBc} / \mathrm{Hz}$ |
| 10 MHz | $-154 \mathrm{dBc} / \mathrm{Hz}$ |

- Operating Supply Voltage Range $3.3 \mathrm{~V} \pm 5 \%$
- Industrial Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Functionally Compatible with IDT557-05, IDT5V41066, IDT5V41236 with enhanced performance
- These are Pb -Free Devices

Applications

- Networking
- Consumer

ON Semiconductor ${ }^{\text {® }}$
www.onsemi.com


| A | $=$ Assembly Location |
| :--- | :--- |
| L | $=$ Wafer Lot |
| Y | $=$ Year |
| W | $=$ Work Week |
| - | $=$ Pb-Free Package |

(Note: Microdot may be in either location)

## ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet.



Figure 2. Pin Configuration (Top View)
Table 1. PIN DESCRIPTION

| Pin | Symbol | 1/0 | Description |
| :---: | :---: | :---: | :---: |
| 1 | VDDXD | Power | Connect to $\mathrm{a}+3.3 \mathrm{~V}$ source. |
| 2 | So | Input | LVTTL/LVCMOS frequency select input 0 . Internal pullup resistor to VDDXD. See output select table 2 for details. |
| 3 | S1 | Input | LVTTL/LVCMOS frequency select input 1. Internal pullup resistor to VDDXD. See output select Table 2 for details. |
| 4 | S2 | Input | LVTTL/LVCMOS frequency select input 2. Internal pullup resistor to VDDXD. See output select Table 2 for details. |
| 5 | X1/CLK | Input | Crystal interface or single-ended reference clock input. |
| 6 | X2 | Output | Crystal interface. Float this pin for reference clock input CLK. |
| 7 | PD | Input | LVTTL/LVCMOS power down input. Assert this pin LOW to enter power down mode. Internal pull-up resistor to VDDXD. |
| 8 | OE | Input | Output enable. Tri-state output (High=enable outputs, Low=disable outputs). Internal pull-up resistor. |
| 9 | GNDXD | Power | Connect to digital circuit ground. |
| 10 | IREF | Output | Precision resistor attached to this pin is connected to the internal current reference. |
| 11 | $\overline{\text { CLK3 }}$ | HCSL or LVDS Output | Inverted clock output. (For LVDS levels see Figure 8) |
| 12 | CLK3 | HCSL or LVDS Output | Noninverted clock output. (For LVDS levels see Figure 8) |
| 13 | $\overline{\text { CLK2 }}$ | $\begin{gathered} \text { HCSL or } \\ \text { LVDS Output } \end{gathered}$ | Inverted clock output. (For LVDS levels see Figure 8) |
| 14 | CLK2 | HCSL or LVDS Output | Noninverted clock output. (For LVDS levels see Figure 8) |
| 15 | VDDODA | Power | Connect to a +3.3 V analog source. |
| 16 | GNDODA | Power | Output and analog circuit ground. |
| 17 | $\overline{\text { CLK1 }}$ | HCSL or LVDS Output | Inverted clock output. (For LVDS levels see Figure 8) |
| 18 | CLK1 | $\begin{gathered} \text { HCSL or } \\ \text { LVDS Output } \end{gathered}$ | Noninverted clock output. (For LVDS levels see Figure 8) |
| 19 | CLKO | HCSL or LVDS Output | Inverted clock output. (For LVDS levels see Figure 8) |
| 20 | CLKO | HCSL or LVDS Output | Noninverted clock output. (For LVDS levels see Figure 8) |

## NB3N51034

Table 2. OUTPUT FREQUENCY AND SPREAD SPECTRUM SELECT TABLE

| S2* $^{*}$ | S1^ $^{*}$ | S0 $^{*}$ | Spread\% | Spread <br> Type | Output <br> Frequency |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | -0.5 | Down | 100 |
| 0 | 0 | 1 | -1.0 | Down | 100 |
| 0 | 1 | 0 | -1.5 | Down | 100 |
| 0 | 1 | 1 | No Spread | N/A | 100 |
| 1 | 0 | 0 | -0.5 | Down | 200 |
| 1 | 0 | 1 | -1.0 | Down | 200 |
| 1 | 1 | 0 | -1.5 | Down | 200 |
| 1 | 1 | 1 | No Spread | N/A | 200 |

*Pins S2, S1 and S0 default high when left open.

## Recommended Crystal Parameters

Crystal
Fundamental AT-Cut
Frequency
Load Capacitance
Shunt Capacitance, C0
Equivalent Series Resistance
Initial Accuracy at $25^{\circ} \mathrm{C}$
Temperature Stability
Aging
25 MHz
$16-20 \mathrm{pF}$
7 pF Max
$50 \Omega$ Max
$\pm 20 \mathrm{ppm}$
$\pm 30 \mathrm{ppm}$
$\pm 20 \mathrm{ppm}$

Table 3. ATTRIBUTES

| Characteristic | Value |
| :--- | :---: |
| Internal Input Default State Resistor (OE, Sx, PD) | $110 \mathrm{k} \Omega$ |
| ESD Protection $\quad$ Human Body Model | 2 kV |
| Moisture Sensitivity, Indefinite Time Out of Dray Pack (Note 1) | Level 1 |
| Flammability Rating $\quad$ Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in |
| Transistor Count | 132,000 |
| Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test |  |

1. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS (Note 2)

| Symbol | Parameter | Rating | Units |
| :--- | :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD}}$ | Positive Power Supply with respect to GND (VDDXD and VDDODA) | 4.6 | V |
| $\mathrm{~V}_{\mathrm{I}}$ | Input Voltage with respect to GND (VIN) | -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$ | V |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating Temperature Range | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {stg }}$ | Storage Temperature Range | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\theta_{\mathrm{JA}}$ | Thermal Resistance (Junction-to-Ambient) (Note 3) | 0 lfpm <br> 500 lfpm | 70 |
| $\theta_{\mathrm{JC}}$ | Thermal Resistance (Junction-to-Case) | 51 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{T}_{\text {sol }}$ | Wave Solder | 50 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
2. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and not valid simultaneously. If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected.
3. JEDEC standard multilayer board - 2S2P (2 signal, 2 power).

Table 5. DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%\right.$, $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 4)

| Symbol | Characteristic | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD}}$ | Power Supply Voltage (VDDXD and VDDODA) | 3.135 | 3.3 | 3.465 | V |
| GND | Power Supply Ground (GNDXD and GNDODA) |  | 0 |  | V |
| $\mathrm{I}_{\mathrm{DD}}$ | Power Supply Current, 200 MHz output, $-1.5 \%$ spread |  | 135 |  | mA |
| IDDOE | Power Supply Current when OE is Set Low |  | 60 |  | mA |
| IDDPD | Power Supply Current (PD = Low, no load) |  | 1.5 |  | mA |
| $\mathrm{V}_{\text {IH }}$ | Input HIGH Voltage (X1/CLK, S0, S1, S2 and OE) | 2000 |  | $V_{D D}+300$ | mV |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage (X1/CLK, S0, S1, S2 and OE) | GND - 300 |  | 800 | mV |
| Vmax | Absolute Maximum Output Voltage (Notes 5, 6) |  |  | 1150 | mV |
| Vmin | Absolute Minimum Output Voltage (Notes 5, 7) | -300 |  |  | mV |
| Vrb | Ringback Voltage (Notes 8, 9) | -100 |  | 100 | mV |
| $\mathrm{V}_{\mathrm{OH}}$ | Output High Voltage (Note 5) | 660 |  | 850 | mV |
| $\mathrm{V}_{\text {OL }}$ | Output Low Voltage (Note 5) | -150 |  | 27 | mV |
| $\mathrm{V}_{\text {CROSS }}$ | Absolute Crossing Voltage (Notes 5, 9, 10) | 250 |  | 550 | mV |
| $\Delta \mathrm{V}_{\text {CROSS }}$ | Total Variation of $\mathrm{V}_{\text {cross }}$ (Notes 5, 9, 11) |  |  | 140 | mV |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
4. VDDXD and VDDODA power pins must be shorted to power supply voltage $V_{D D}$ and GNDXD and GNDODA ground pins must be shorted to power supply ground GND. Measurement taken with outputs terminated with $R_{S}=33.2 \Omega, R_{L}=50 \Omega$, with test load capacitance of 2 pF and current biasing resistor set at $475 \Omega$. See Figure 7. Guaranteed by characterization.
5. Measurement taken from single-ended waveform
6. Defined as the maximum instantaneous voltage value including positive overshoot
7. Defined as the maximum instantaneous voltage value including negative overshoot
8. Measurement taken from differential waveform
9. Measured at crossing point where the instantaneous voltage value of the rising edge of CLKXx+ equals the falling edge of CLKx-.
10. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.
11. Defined as the total variation of all crossing voltage of rising CLKx + and falling CLKx-. This is maximum allowed variance in the $V_{C R O S s}$ for any particular system.

Table 6. AC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%\right.$, $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; Note 12)

| Symbol | Characteristic | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\text {CLKIN }}$ | Clock/Crystal Input Frequency |  | 25 |  | MHz |
| ${ }^{\text {f CLKOUT }}$ | Output Clock Frequency |  | 100/200 |  | MHz |
| ¢NOISE | Phase-Noise Performance SS OFF $\mathrm{f}_{\text {CLKOUT }}=100 \mathrm{MHz}$ <br> @ 100 Hz offset from carrier <br> @ 1 kHz offset from carrier <br> @ 10 kHz offset from carrier <br> @ 100 kHz offset from carrier <br> @ 1 MHz offset from carrier <br> @ 10 MHz offset from carrier |  | $\begin{aligned} & -110 \\ & -123 \\ & -134 \\ & -137 \\ & -138 \\ & -154 \end{aligned}$ |  | $\mathrm{dBc} / \mathrm{Hz}$ |
| $\mathrm{t}_{\mathrm{JIT}}$ (Ф) | Phase RMS Jitter, Integration Range 12 kHz to 20 MHz |  | 0.4 |  | ps |
| $\mathrm{f}_{\text {MOD }}$ | Spread Spectrum Modulation Frequency | 30 | 31.5 | 33.33 | kHz |
| SSCRED | Spectral Reduction, $\mathrm{f}_{\text {CLKOUT }}$ of 100 MHz with $-0.5 \%$ spread, $3^{\text {rd }}$ Harmonic (Note 13) |  | -10 |  | dB |
| tSKEW | Within Device Output to Output Skew |  |  | 40 | ps |
| Eppm | Frequency Synthesis Error, All Outputs |  | 0 |  | ppm |
| ${ }^{\text {t SPREAD }}$ | Spread Spectruction Transition Time <br> (Stablization Time After Spread Spectrum Changes) | 7 |  | 30 | ms |
| toE | Output Enable/Disable Time (All outputs) (Note 14) |  |  | 10 | $\mu s$ |
| touTy_CYCLE | Output Clock Duty Cycle (Measured at cross point) | 45 | 50 | 55 | \% |
| $\mathrm{t}_{\mathrm{R}}$ | Output Risetime (Measured from 175 mV to 525 mV , Figure 9) | 175 | 340 | 700 | ps |
| $\mathrm{t}_{\mathrm{F}}$ | Output Falltime (Measured from 525 mV to 175 mV , Figure 9) | 175 | 400 | 700 | ps |
| $\Delta t_{R}$ | Output Risetime Variation (Single-Ended) |  |  | 125 | ps |
| $\Delta t_{F}$ | Output Falltime Variation (Single-Ended) |  |  | 125 | ps |
| Stabilization <br> Time | Stabilization Time From Powerup $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ |  | 3.0 |  | ms |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
12. VDDXD and VDDODA power pins must be shorted to power supply voltage $V_{D D}$ and GNDXD and GNDODA ground pins must be shorted to power supply ground GND. Measurement taken from differential output on single-ended channel terminated with $R_{S}=33.2 \Omega, R_{L}=50$ $\Omega$, with test load capacitance of 2 pF and current biasing resistor set at $475 \Omega$. See Figure 7. Guaranteed by characterization.
13. Spread spectrum clocking enabled.
14. Output pins are tri-stated when OE is asserted LOW. Output pins are driven differentially when OE is HIGH unless device is in power down mode, PD = Low.

Table 7. AC ELECTRICAL CHARACTERISTICS - PCI EXPRESS JITTER SPECIFICATIONS,
$V_{D D}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

| Symbol | Parameter | Test Conditions |  | Min | Typ | Max | PCle Industry Spec | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| tj (PCle Gen 1) | Phase Jitter Peak-to-Peak (Notes 16 and 19) | $\mathrm{f}=100 \mathrm{MHz}, 25 \mathrm{MHz}$ Crystal Input Evaluation Band: 0 Hz - Nyquist (clock frequency/2) | SSOFF |  | 10 | 20 | 86 | ps |
|  |  |  | $\begin{aligned} & \hline \text { SSON } \\ & (-0.5 \%) \end{aligned}$ |  | 19 | 28 |  |  |
| tREFCLK_HF_RMS ( $\mathrm{PCle} \overline{\mathrm{Gen}}{ }^{-}$2) | Phase Jitter RMS (Notes 17 and 19) | $\begin{gathered} \hline \mathrm{f}=100 \mathrm{MHz}, 25 \mathrm{MHz} \text { Crystal } \\ \text { Input High Band: } \\ 1.5 \mathrm{MHz} \text { - Nyquist (clock } \\ \text { frequency/2) } \end{gathered}$ | SSOFF |  | 1.0 | 1.8 | 3.1 | ps |
|  |  |  | $\begin{gathered} \hline \text { SSON } \\ (-0.5 \%) \end{gathered}$ |  | 1.1 | 1.9 |  |  |
| tREFCLK LF RMS ( $\mathrm{PCle} \overline{\mathrm{G}} \mathrm{en}{ }^{-}$2) | Phase Jitter RMS (Notes 17 and 19) | $\mathrm{f}=100 \mathrm{MHz}, 25 \mathrm{MHz}$ Crystal Input Low Band: $10 \mathrm{kHz}-1.5 \mathrm{MHz}$ | SSOFF |  | 0.1 | 0.15 | 3.0 | ps |
|  |  |  | $\begin{gathered} \hline \text { SSON } \\ (-0.5 \%) \end{gathered}$ |  | 0.8 | 1.1 |  |  |
| tREFCLK_RMS (PCle Gēn 3) | Phase Jitter RMS (Notes 18 and 19) | $\mathrm{f}=100 \mathrm{MHz}$, 25 MHz Crystal Input Evaluation Band: 0 Hz Nyquist (clock frequency/2) | SSOFF |  | 0.35 | 0.7 | 1.0 | ps |
|  |  |  | $\begin{gathered} \hline \text { SSON } \\ (-0.5 \%) \end{gathered}$ |  | 0.55 | 0.8 |  |  |
| tREFCLK RMS <br> (PCle Gen 4) | Phase Jitter RMS (Notes 18 and 19) | $\mathrm{f}=100 \mathrm{MHz}, 25 \mathrm{MHz}$ Crystal Input Evaluation Band: 0 Hz <br> - Nyquist (clock frequency/2) | SSOFF |  | 0.35 | 0.5 | 0.5 | ps |

15. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 Ifpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.
16. Peak-to-Peak jitter after applying system transfer function for the Common Clock Architecture. Maximum limit for PCI Express Gen 1 is 86 ps peak-to-peak for a sample size of $10^{6}$ clock periods.
17. RMS jitter after applying the two evaluation bands to the two transfer functions defined in the Common Clock Architecture and reporting the worst case results for each evaluation band. Maximum limit for PCI Express Generation 2 is 3.1 ps RMS for tREFCLK_HF_RMS (High Band) and 3.0ps RMS for tREFCLK_LF_RMS (Low Band).
18. RMS jitter after applying system transfer function for the common clock architecture.
19. VDDXD and VDDODA power pins must be shorted to power supply voltage $V_{D D}$ and GNDXD and GNDODA ground pins must be shorted to power supply ground GND. Measurement taken from differential output on single-ended channel terminated with $\mathrm{R}_{\mathrm{S}}=33.2 \Omega$, $\mathrm{R}_{\mathrm{L}}=50$ $\Omega$, with test load capacitance of 2 pF and current biasing resistor set at $475 \Omega$. See Figure 7 . This parameter is guaranteed by characterization. Not tested in production.

## NB3N51034

PHASE NOISE


Figure 3. Typical Phase Noise Plot at 100 MHz ( $\mathrm{f}_{\text {CLKIN }}=\mathbf{2 5}$ MHz Crystal , fclkout $=\mathbf{1 0 0}$ MHz SS OFF, RMS Phase Jitter for Integration Range 12 kHz to $20 \mathrm{MHz}=414 \mathrm{fs}$, Output Termination = HCSL type)


Figure 4. Typical Phase Noise Plot at 200 MHz (fclkin $=25$ MHz Crystal , f $_{\text {clkout }}=200 \mathrm{MHz}$ SS OFF, RMS Phase Jitter for Integration Range 12 kHz to $20 \mathrm{MHz}=406 \mathrm{fs}$, Output Termination = HCSL type)

## APPLICATION INFORMATION

## Crystal Input Interface

Figure 5 shows the NB3N51034 device crystal oscillator interface using a typical parallel resonant crystal. The device crystal connections should include pads for small capacitors from X1 to ground and from X2 to ground. These capacitors, $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$, need to consider the stray capacitances of the board and are used to match the nominally required crystal load capacitance $\mathrm{C}_{\mathrm{L}}$. A parallel crystal with loading capacitance $\mathrm{C}_{\mathrm{L}}=18 \mathrm{pF}$ would use $\mathrm{C}_{1}=26 \mathrm{pF}$ and $\mathrm{C}_{2}=26 \mathrm{pF}$
as nominal values, assuming approximately 2 pF of stray capacitance per trace and approximately 8 pF of internal capacitance.
$\mathrm{C}_{\mathrm{L}}=\left(\mathrm{C}_{1}+\mathrm{C}_{\text {stray }}+\mathrm{C}_{\text {in }}\right) / 2 ; \mathrm{C}_{1}=\mathrm{C}_{2}$
The frequency accuracy and duty cycle skew can be fine-tuned by adjusting the $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ values. For example, increasing the $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ values will reduce the operational frequency.


Figure 5. Crystal Interface Loading

## Power Supply Filter

In order to isolate the NB3N51034 from system power supply, noise decoupling is required. The $10 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ cap from supply pins to GND decoupling capacitor has to be connected between $\mathrm{V}_{\mathrm{DD}}$ (pins 1 and 15) and GND (pins 9
and 6). It is recommended to place decoupling capacitors as close as possible to the device to minimize lead inductance.

## Termination

The output buffer structure is shown in the Figure 6.


Figure 6. Simplified Output Structure

The outputs can be terminated to drive HCSL receiver (see Figure 7) or LVDS receiver (see Figure 8). HCSL output interface requires $49.9 \Omega$ termination resistors to GND for generating the output levels. LVDS output interface may not
require the $100 \Omega$ near the LVDS receiver if the receiver has internal $100 \Omega$ termination. An optional series resistor $\mathrm{R}_{\mathrm{L}}$ may be connected to reduce the overshoots in case of impedance mismatch.

HCSL INTERFACE


Figure 7. Typical Termination for HCSL Output Driver and Device Evaluation

## LVDS COMPATIBLE INTERFACE



Figure 8. Typical Termination for LVDS Device Load

## NB3N51034



Figure 9. HCSL Output Parameter Characteristics

ORDERING INFORMATION

| Device | Package | Shipping $^{\dagger}$ |
| :---: | :---: | :---: |
| NB3N51034DTG | TSSOP-20 <br> (Pb-Free) | 75 Units / Rail |
| NB3N51034DTR2G | TSSOP-20 <br> (Pb-Free) | $2500 /$ Tape \& Reel |

[^0]TSSOP-20 WB
CASE 948E
ISSUE D
DATE 17 FEB 2016

SCALE 2:1


1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
CONTROLLING DIMENSION: MILLIMETER
2. DIMENSION A DOES NOT INCLUDE MOLD

FLASH, PROTRUSIONS OR GATE BURRS.
FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NO
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. SHALL NOT EXCEED $0.25(0.010)$ PER SIDE
5. DIMENSION K DOES NOT INCLUDE

DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

|  | MILLIMETERS |  | INCHES |  |
| :---: | :---: | :---: | :---: | :---: |
| DIM | MIN | MAX | MIN | MAX |
| A | 6.40 | 6.60 | 0.252 | 0.260 |
| B | 4.30 | 4.50 | 0.169 | 0.177 |
| C | --- | 1.20 | --- | 0.047 |
| D | 0.05 | 0.15 | 0.002 | 0.006 |
| F | 0.50 | 0.75 | 0.020 | 0.030 |
| G | 0.65 BSC |  | 0.026 BSC |  |
| H | 0.27 | 0.37 | 0.011 | 0.015 |
| J | 0.09 | 0.20 | 0.004 | 0.008 |
| J1 | 0.09 | 0.16 | 0.004 | 0.006 |
| K | 0.19 | 0.30 | 0.007 | 0.012 |
| K1 | 0.19 | 0.25 | 0.007 | 0.010 |
| L | 6.40 | BSC | 0.252 BSC |  |
| M | 0 | $0^{\circ}$ | $8^{\circ}$ | 0 |

GENERIC MARKING DIAGRAM* НРННННННН

|  | XXXX |
| :---: | :---: |
|  | XXXX |
|  | ALYW. |
| $\bigcirc$ | - |

A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present.
DIMENSIONS: MILLIMETERS

| DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-20 WB | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK854BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7 ADCLK905BCPZ-WP


[^0]:    $\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

