NB3N853501E

3.3 V LVTTL/LVCMOS 2:1 MUX to 4 LVPECL Differential Clock Fanout Buffer Outputs with Clock Enable and Clock Select

Description

The NB3N853501E is a pure 3.3 V supply 2:1:4 clock distribution fanout buffer. Input MUX selects one of two LVCMOS/LVTTL CLK lines by the CLK_SEL pin (HIGH for CLK1, LOW for CLK0) using LVCMOS/LVTTL levels. Outputs are LVPECL levels and are synchronously enabled by CLK_EN using LVCMOS/LVTTL levels (HIGH to enable outputs, LOW to disable output).

Features

- Four differential LVPECL Outputs
- Two Selectable LVCMOS/LVTTL CLOCK Inputs
- Up to 266 MHz Clock Operation
- Output to Output Skew: 30 ps (Max.)
- Device to Device Skew 250 ps (Max.)
- Propagation Delay 2.0 ns (Max.)
- Operating range: $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 5 \% \mathrm{~V}(3.135$ to 3.465 V$)$
- Additive Phase Jitter, RMS: 62 fs (Typ)
- Synchronous Clock Enable Control
- Industrial Temp. Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
- Pb-Free TSSOP20 Package
- These are $\mathrm{Pb}-$ Free Devices

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.
ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Figure 1. Simplified Logic Diagram

Figure 2. Pinout Diagram (Top View)

Table 1. PIN DESCRIPTION

Number	Name	1/0	Open Default	Description
1	V_{EE}			Negative (Ground) Power Supply pin must be externally connected to power supply to guarantee proper operation.
2	CLK_EN	LVCMOS / LVTTL	Pullup	Synchronized Clock Enable when HIGH. When LOW, outputs are disabled (Qx HIGH, Qx LOW)
3	CLK_SEL	LVCMOS / LVTTL	Pulldown	Clock Input Select (HIGH selects CLK1, LOW selects CLK0 input)
4	CLKO	LVCMOS / LVTTL	Pulldown	Clock 0 Input. Float open when unused.
5, 6, 8, 9	nc			No Connect
6	CLK1	LVCMOS / LVTTL	Pulldown	Clock 1 Input. Float open when unused.
10, 13, 18	V_{CC}			Positive Power Supply pins must be externally connected to power supply to guarantee proper operation.
$\begin{gathered} 11,14,16, \\ 19 \end{gathered}$	Q[3:0]	LVPECL		Invert Differential Outputs
$\begin{gathered} 12,15,16, \\ 20 \end{gathered}$	Q[3:0]	LVPECL		True Differential Outputs

Table 2. FUNCTIONS

Inputs			Outputs		
CLK_EN	CLK_SEL	Input Function	Output Function	Qx	Qx
0	0	CLK0 input selected	Disabled	LOW	HIGH
0	1	CLK1 Input Selected	Disabled	LOW	HIGH
1	0	CLK0 input selected	Enabled	CLK0	Invert of CLK1
1	1	CLK1 Input Selected	Enabled	CLK1	Invert of CLK1

[^0]

Figure 3. CLK_EN TIMING DIAGRAM

Table 3. ATTRIBUTES (Note 2)

Characteristics	Value
Internal Input Pullup Resistor	$50 \mathrm{k} \Omega$
Internal Input Pulldown Resistor	$50 \mathrm{k} \Omega$
ESD Protection	Human Body Model Machine Model
202 kV	
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 2)	Level 1
Flammability Rating Oxygen Index	UL 94 V-0 @ 0.125 in 28 to 34
Transistor Count	317 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

2. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS (Note 3)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{CC}	Supply Voltage			4.6	V
$V_{\text {in }}$	Input Voltage			$-0.5 \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{C}_{\text {in }}$	Input Capacitance			4	pF
$\mathrm{I}_{\text {out }}$	Output Current	$\begin{aligned} & \text { Continuous } \\ & \text { Surge } \end{aligned}$		$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
T_{A}	Operating Temperature Range, Industrial			-40 to $\leq+85$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	$\begin{gathered} 0 \text { lfpm } \\ 500 \text { lfpm } \end{gathered}$	TSSOP-20	$\begin{gathered} \hline 140 \\ 50 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm	$\begin{gathered} \hline \text { Single-Layer } \\ \text { PCB (700 } \mathrm{mm}^{2}, \\ 2 \mathrm{oz}) \end{gathered}$	128	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		200 lfpm	$\begin{gathered} \text { Multi-Layer } \\ \text { PCB (700 } \mathrm{mm}^{2}, \\ 2 \mathrm{oz}) \end{gathered}$	94	
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	(Note 4)	TSSOP-20	23 to 41	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder			265	${ }^{\circ} \mathrm{C}$

[^1]Table 5. DC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 5 \% \mathrm{~V}(3.135$ to 3.465 V$)$, $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 5)

Symbol	Characteristic		Min	Typ	Max	Unit
$I_{\text {EE }}$	Power Supply Current				50	mA
V_{IH}	Input HIGH Voltage		2		$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}+ \\ & 0.3 \end{aligned}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	CLK0 CLK1 CLK_EN CLK_SEL	$\begin{aligned} & \hline-0.3 \\ & -0.3 \end{aligned}$		$\begin{aligned} & 1.3 \\ & 0.8 \end{aligned}$	V
I_{H}	Input High Current ($\left.\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {in }}=3.456 \mathrm{~V}\right)$	$\begin{aligned} & \text { CLKx, CLK_SEL } \\ & \text { CLK__EN } \end{aligned}$			$\begin{gathered} 150 \\ 5 \end{gathered}$	$\mu \mathrm{A}$
IIL	Input LOW Current ($\left.\mathrm{V}_{\mathrm{CC}}=3.456 \mathrm{~V} ; \mathrm{V}_{\text {in }}=\mathrm{GND}\right)$	CLKx, CLK_SEL CLK_EN	$\begin{gathered} \hline-5 \\ -150 \end{gathered}$			$\mu \mathrm{A}$
V_{OH}	Output HIGH Voltage		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.4 \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.9 \end{gathered}$	V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 2.0 \end{gathered}$		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}- \\ & 1.7 \end{aligned}$	V
VOUTSWING	Output Voltage Swing (peak-to-peak)		0.6		1.0	V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
5. Outputs terminated 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$, see Figure 4. Input levels of 0.8 V and 2.4 V unless stated otherwise.

Table 6. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 5 \% \mathrm{~V}(3.135$ to 3.465 V$)$, $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 6)

Symbol	Characteristic	Min	Typ	Max	Unit
$\mathrm{F}_{\text {MAX }}$	Maximum Operating Frequency	0		266	MHz
$t_{\text {PD }}$	Propagation Delay	0.9		2.0	ns
$\mathrm{tSKEW}_{\text {DC }}$	Duty Cycle Skew same path similar conditions at 50 MHz	48	50	52	\%
$\mathrm{tSKEW}_{\mathrm{O}-\mathrm{O}}$	Output to Output Skew Within A Device			30	ps
tSKEW ${ }_{\text {D-D }}$	Device-to-Device Skew similar path and conditions			250	ps
$\mathrm{t}_{\text {JIT }}$	Additive Phase Noise Jitter (RMS) @ 155.52 MHz (Integrated from 12 kHz to 20 MHz) See Figure 6.		0.062		ps
$\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$	Output rise and fall times @ 266 MHz (20\% and 80\% points)	240		700	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
6. Outputs terminated 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$, see Figure 4. Input levels of 0.8 V and 2.4 V unless stated otherwise. Measured from Input Midpoint $\left(\mathrm{V}_{\mathrm{DD}} / 2\right)$ to differential Output crosspoints, see Figure 5.

$3.3 \vee$ core, $3.3 \vee$ Output
Figure 4. Typical Test Setup and Termination for Evaluation. The V_{CC} of 2.0 V and V_{EE} of $\mathbf{- 1 . 3} \pm 0.165 \mathrm{~V}$ Split supply allows a direct connection to an oscilloscope 50Ω impedance input module. Also reference AND8020.

NB3N853501E

Figure 5. AC Measurement Reference

Figure 6. For 155.52 MHz carrier, the NB3N853501E Additive Phase Noise ($\mathrm{dBc} / \mathrm{Hz}$) verses SSB Offset Frequency (Hz) Integrated Jitter from 12 kHz to 20 MHz (Upper Heavy Line) is 93.3 fs RMS. The E8663B Source Generator Additive Phase Noise (Lower Light Line) is 70.1 fs RMS. Where $\mathrm{t}_{\mathrm{JIT}}=\sqrt{\left(\mathrm{t}_{\mathrm{JIToutput}}\right)^{2}-\left(\mathrm{t}_{\mathrm{JITinput}}\right)^{2}=61.6 \mathrm{fs}}$

ORDERING INFORMATION

Device	Package	Shipping †
NB3N853501EDTG	TSSOP-20 (Pb-Free)	75 Units / Rail
NB3N853501EDTR2G	TSSOP-20 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TSSOP-20 WB
CASE 948E
ISSUE D
DATE 17 FEB 2016

SCALE 2:1

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER
2. DIMENSION A DOES NOT INCLUDE MOLD

FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION INTERLEAD FLASH OR PROTRUSION. SHALL NOT EXCEED 0.25 (0.010) PER SIDE
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	6.40	6.60	0.252	0.260
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
H	0.27	0.3	0.011	0.015
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
M	0°	8°	0°	8°

GENERIC MARKING DIAGRAM*

A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " \quad ", may or may not be present.

| DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-20 WB | PAGE 1 OF 1 |

[^2]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C EC4P-221-MRXD1 6EP1332-1SH71 6ES7211-1AE40-0XB0 6ES7223-1PH32-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B HMC6832ALP5LE CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805EQGI 49FCT805CTQG 74FCT3807ASOG 74FCT3807EQGI 74FCT388915TEPYG 853S012AKILF 853S013AMILF 853S058AGILF 8V79S680NLGI ISPPAC-CLK5312S-01TN48I

[^0]: 1. After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as show in Figure 3.
[^1]: Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
 3. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and not valid simultaneously.

 If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected.
 4. JEDEC standard multilayer board - 2S2P (2 signal, 2 power).

[^2]: ON Semiconductor and (UN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

