NB3U1548C

3.3V/2.5V/1.8V/1.5V 160 MHz 1:4 LVCMOS/LVTTL Low Skew Over Voltage Tolerant Fanout Buffer

Description

The NB3U1548C is an LVCMOS, overvoltage tolerant clock fanout buffer targeted for clock generation in high performance telecommunication, networking and computing applications. The device is optimized for low skew clock distribution in low voltage applications. The input overvoltage tolerance enables using this device in mixed mode voltage applications. An output enable pin controls whether the outputs are in the active or high impedance state. Guaranteed output skew characteristics make the NB3U1548C ideal for those applications demanding well defined performance and repeatability. The NB3U1548C is packaged in a small SOIC-8 and in an TSSOP-8 package.

Features

- Low skew 1:4 Fanout Buffer
- Supports 3.3 V, 2.5 V, 1.8 V and 1.5 V Power Supplies
- LVCMOS Input and Output Levels
- 3.6 V Overvoltage Tolerance at the Clock and Control Inputs
- Supports Clock Frequencies up to 160 MHz
- LVCMOS Compatible Control Input for Output Disable
- Output Disabled to a High Impedance State
- $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Ambient Operating Temperature
- Available in $\mathrm{Pb}-$ Free RoHS Compliant Packages (SOIC-8, TSSOP-8)
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

Figure 1. Block Diagram

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W, WW	$=$ Work Week
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)
data sheet.

NB3U1548C

Figure 2. Pin Configuration (Top View)

Table 1. PIN DESCRIPTIONS

Number	Name	Type		Description
1	CLK_IN	Input	Pulldown	Single-ended clock input. LVCMOS interface levels.
2	Q1	Output		Single-ended clock output. LVCMOS interface levels.
3	Q2	Output		Single-ended clock output. LVCMOS interface levels.
4	Q3	Output		Single-ended clock output. LVCMOS interface levels.
5	Q4	Output		Single-ended clock output. LVCMOS interface levels.
6	GND	Power		Power supply ground.
7	VDD	Power		Power supply pin.
8	OE	Input	Pullup	Output enable pin. See Table 3. LVCMOS interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.
Table 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
CIN	Input Capacitance			4		pF
CPD	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}$		14		pF
		$\mathrm{V}_{\mathrm{DD}}=2.375 \mathrm{~V}$		13		pF
		$\mathrm{V}_{\mathrm{DD}}=1.95 \mathrm{~V}$		13		pF
		$\mathrm{V}_{\mathrm{DD}}=1.6 \mathrm{~V}$		12		pF
RPULLUP	Input Pullup Resistor			51		$\mathrm{k} \Omega$
RPULLDOWN	Input Pulldown Resistor			51		$\mathrm{k} \Omega$
ROUT	Output Impedance	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%$		9		Ω
		$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 5 \%$		10		Ω
		$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$		12		Ω
		$\mathrm{V}_{\mathrm{DD}}=1.5 \pm 0.1 \mathrm{~V}$		15		Ω

Function Table

Table 3. OE CONFIGURATION TABLE

Input	
$\mathbf{O E}$	Operation
0	$\mathrm{Q}[4: 1]$ disabled (high-impedance)
1 (default)	$\mathrm{Q}[4: 1]$ enabled

NOTE: OE is an asynchronous control.

Table 4. ABSOLUTE MAXIMUM RATINGS

Item	
Supply Voltage, V_{DD}	4.6 V
Inputs, V_{I}	3.6 V
Outputs, V_{O}	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Package Thermal Impedance, θ_{JA} 8 Lead SOIC 8 Lead TSSOP	$102.5^{\circ} \mathrm{C} / \mathrm{W}(0 \mathrm{mps})$
Storage Temperature, $\mathrm{T}_{\text {STG }}$	$151.2^{\circ} \mathrm{C} / \mathrm{W}(0 \mathrm{mps})$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. JEDEC standard multilayer board - 2S2P (2 signal, 2 power) with $6 \mathrm{~cm}^{2}$ copper area.
2. For additional information, see Application Note AND8003/D.

Table 5. DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
POWER SUPPLY DC CHARACTERISTICS, $\mathrm{V}_{\text {DD }}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$						
$V_{D D}$	Power Supply Voltage		3.135	3.3	3.465	V
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent Power Supply Current	Inputs Open, Outputs Unloaded			1	mA

POWER SUPPLY DC CHARACTERISTICS, $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

V_{DD}	Power Supply Voltage		2.375	2.5	2.625	V
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent Power Supply Current	Inputs Open, Outputs Unloaded			1	mA

POWER SUPPLY DC CHARACTERISTICS, $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

V_{DD}	Power Supply Voltage		1.65	1.8	1.95	V
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent Power Supply Current	Inputs Open, Outputs Unloaded			1	mA

POWER SUPPLY DC CHARACTERISTICS, $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

$V_{D D}$	Power Supply Voltage		1.4	1.5	1.6	V
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent Power Supply Current	Inputs Open, Outputs Unloaded			1	mA

LVCMOS DC CHARACTERISTICS, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

$\mathrm{V}_{\text {IH }}$	Input High Voltage			0.65 * V_{DD}	3.6	V
V_{IL}	Input Low Voltage			-0.3	0.35 * V ${ }_{\text {DD }}$	V
$\mathrm{IIH}^{\text {H }}$	Input High Current	CLK_IN	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {IN }}=3.465 \mathrm{~V}$		165	$\mu \mathrm{A}$
		OE	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {IN }}=3.465 \mathrm{~V}$		5	$\mu \mathrm{A}$
IIL	Input Low Current	CLK_IN	$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-5		$\mu \mathrm{A}$
		OE	$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-150		$\mu \mathrm{A}$
V_{OH}	Output High Voltage	Q[4:1]	$\mathrm{IOH}=-12 \mathrm{~mA}$	2.6		V
V_{OL}	Output Low Voltage	Q[4:1]	$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.5	V

LVCMOS DC CHARACTERISTICS, $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

V_{IH}	Input High Voltage			0.65 * V_{DD}	3.6	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-0.3	0.35 * VDD	V
$\mathrm{IIH}^{\text {H}}$	Input High Current	CLK_IN	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {IN }}=2.625 \mathrm{~V}$		165	$\mu \mathrm{A}$
		OE	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {IN }}=2.625 \mathrm{~V}$		5	$\mu \mathrm{A}$
IIL	Input Low Current	CLK_IN	$\mathrm{V}_{\mathrm{DD}}=2.625 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-5		$\mu \mathrm{A}$
		OE	$\mathrm{V}_{\mathrm{DD}}=2.625 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-150		$\mu \mathrm{A}$

NB3U1548C

Table 5. DC ELECTRICAL CHARACTERISTICS

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

V_{OH}	Output High Voltage	$\mathrm{Q}[4: 1]$	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	1.8		V	
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage	$\mathrm{Q}[4: 1]$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$			0.5	V

LVCMOS DC CHARACTERISTICS, $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

$\mathrm{V}_{\text {IH }}$	Input High Voltage			0.65 * VDD	3.6	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-0.3	0.35 * V_{DD}	V
I_{IH}	Input High Current	CLK_IN	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {IN }}=1.95 \mathrm{~V}$		165	$\mu \mathrm{A}$
		OE			5	$\mu \mathrm{A}$
IIL	Input Low Current	CLK_IN	$\mathrm{V}_{\mathrm{DD}}=1.95 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-5		$\mu \mathrm{A}$
		OE	$\mathrm{V}_{\mathrm{DD}}=1.95 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-150		$\mu \mathrm{A}$
V_{OH}	Output High Voltage	Q[4:1]	$\mathrm{l}_{\mathrm{OH}}=-6 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.45$		V
V_{OL}	Output Low Voltage	Q[4:1]	$\mathrm{l}_{\mathrm{OL}}=6 \mathrm{~mA}$		0.45	V

LVCMOS DC CHARACTERISTICS, $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

V_{IH}	Input High Voltage			0.65 * VDD	3.6	V
V_{IL}	Input Low Voltage			-0.3	0.35 * VDD	V
I_{H}	Input High Current	CLK_IN	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {IN }}=1.6 \mathrm{~V}$		165	$\mu \mathrm{A}$
		OE	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {IN }}=1.6 \mathrm{~V}$		5	$\mu \mathrm{A}$
$I_{\text {IL }}$	Input Low Current	CLK_IN	$\mathrm{V}_{\mathrm{DD}}=1.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-5		$\mu \mathrm{A}$
		OE	$\mathrm{V}_{\mathrm{DD}}=1.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-150		$\mu \mathrm{A}$
V_{OH}	Output High Voltage	Q[4:1]	$\mathrm{l}_{\mathrm{OH}}=-4 \mathrm{~mA}$	0.75 * VDD		V
V_{OL}	Output Low Voltage	Q[4:1]	$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25 * VDD	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 6. AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units

AC CHARACTERISTICS, $V_{D D}=3.3 \mathrm{~V} \pm 5 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

fout	Output Frequency				160	MHz
$\mathrm{tp}_{\mathrm{LH}}$	Propagation Delay (low to high transition); (Notes 4, 8)		0.7		2.1	ns
$\mathrm{tp}_{\mathrm{HL}}$	Propagation Delay (high to low transition); (Notes 4, 8)		0.7		2.1	ns
$t_{\text {PLZ }}, t_{\text {PHZ }}$	Disable Time, (active to high-impedance)				10	ns
$t_{\text {PZL }}, t_{\text {PZH }}$	Enable Time, (high-impedance to active)				10	ns
tsk(0)	Output Skew; (Notes 5, 6)				250	ps
tsk(pp)	Part-to-Part Skew; (Notes 5, 7)				800	ps
tjit	Buffer Additive Phase Jitter, RMS	25 MHz , Integration Range: $12 \mathrm{kHz}-5 \mathrm{MHz}$		0.094		ps
t_{R} / t_{F}	Output Rise/Fall Time	10\% to 90\%	0.33		1.2	ns
odc	Output Duty Cycle		48		53	\%

AC CHARACTERISTICS, $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

fout	Output Frequency				160	MHz
$t_{\text {LH }}$	Propagation Delay (low to high transition); (Notes 4, 8)		0.8		2.0	ns
$\mathrm{tp}_{\mathrm{HL}}$	Propagation Delay (high to low transition); (Notes 4, 8)		0.8		2.0	ns
tpLZ, tPHz	Disable Time (active to high-impedance)				10	ns
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Enable Time (high-impedance to active)				10	ns
tsk(0)	Output Skew; (Notes 5, 6)				250	ps
tsk(pp)	Part-to-Part Skew; (Notes 5, 7)				800	ps
tjit	Buffer Additive Phase Jitter, RMS	25 MHz , Integration Range: $12 \mathrm{kHz}-5 \mathrm{MHz}$		0.076		ps
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	Output Rise/Fall Time	10\% to 90\%	0.33		1.2	ns
odc	Output Duty Cycle		45		53	\%

AC CHARACTERISTICS, $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

fout	Output Frequency				160	MHz
tp $_{\text {LH }}$	Propagation Delay (Iow to high transition); (Notes 4, 8)		1.1		2.8	ns
tp $_{\text {HL }}$	Propagation Delay (high to low transition); (Notes 4, 8)		1.1		2.8	ns
tpLZ, tPHZ	Disable Time (active to high-impedance)				10	ns
tPzL, tPzH	Enable Time (high-impedance to active)				10	ns
tsk(0)	Output Skew; (Notes 5, 6)				250	ps
tsk(pp)	Part-to-Part Skew; (Notes 5, 7)				800	ps
tjit	Buffer Additive Phase Jitter, RMS	25 MHz , Integration Range: $12 \mathrm{kHz}-5 \mathrm{MHz}$		0.193		ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
3. Characterized up to Fout $\leq 150 \mathrm{MHz}$.
4. Measured from the $V_{D D} / 2$ of the input to $V_{D D} / 2$ of the output.
5. This parameter is defined in accordance with JEDEC Standard 65.
6. Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $\mathrm{V}_{\mathrm{DD}} / 2$.
7. Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $\mathrm{V}_{\mathrm{DD}} / 2$.
8. With rail to rail input clock.

Table 6. AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
AC CHARACTERISTICS, $\mathrm{V}_{\mathrm{DD}}=\mathbf{1 . 8} \mathbf{V} \pm \mathbf{0 . 1 5} \mathrm{V}, \mathrm{T}_{\mathbf{A}}=-\mathbf{4 0} 0^{\circ} \mathbf{C}$ to $\mathbf{8 5}{ }^{\circ} \mathbf{C}$						
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	Output Rise/Fall Time	0.63 V to 1.17 V	0.11		0.6	ns
odc	Output Duty Cycle		47		53	$\%$

AC CHARACTERISTICS, $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

fout	Output Frequency				160	MHz
$t_{\text {LH }}$	Propagation Delay (low to high transition); (Notes 4, 8)		1.5		3.5	ns
$\mathrm{tp}_{\mathrm{HL}}$	Propagation Delay (high to low transition); (Notes 4, 8)		1.5		3.5	ns
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PHZ }}$	Disable Time (active to high-impedance)				10	ns
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Enable Time (high-impedance to active)				10	ns
tsk(o)	Output Skew; (Notes 5, 6)				250	ps
tsk(pp)	Part-to-Part Skew; (Notes 5, 7)				800	ps
tjit	Buffer Additive Phase Jitter, RMS	25 MHz , Integration Range: $12 \mathrm{kHz}-5 \mathrm{MHz}$		0.266		ps
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	Output Rise/Fall Time	0.525 V to 0.975 V	0.11		0.6	ns
odc	Output Duty Cycle		47		53	\%

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
3. Characterized up to FOUT $\leq 150 \mathrm{MHz}$.
4. Measured from the $\mathrm{V}_{\mathrm{DD}} / 2$ of the input to $\mathrm{V}_{\mathrm{DD}} / 2$ of the output.
5. This parameter is defined in accordance with JEDEC Standard 65.
6. Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $\mathrm{V}_{\mathrm{DD}} / 2$.
7. Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $\mathrm{V}_{\mathrm{DD}} / 2$.
8. With rail to rail input clock.

NB3U1548C

Parameter Measurement Information

Figure 3. 3.3 V Output Load AC Test Circuit

Figure 5. 1.8 V Output Load AC Test Circuit

Figure 7. Output Skew

Figure 4. 2.5 V Output Load AC Test Circuit

Figure 6. 1.5 V Output Load AC Test Circuit

Figure 8. Part-to-Part Skew

NB3U1548C

Parameter Measurement Information, (continued)

Figure 9. Output Enable/Disable Time

Figure 11. 1.5 V Output Rise/Fall Time

Figure 13. 2.5 V and 3.3 V Output Rise/Fall Time

Figure 10. Output Duty Cycle/Pulse Width/Period

Figure 12. 1.8 V Output Rise/Fall Time

Figure 14. Propagation Delay

Table 7. THERMAL RESISTANCE $\boldsymbol{\theta}_{\mathrm{JA}}$

$\boldsymbol{\theta}_{\mathbf{J A}}$ by Velocity				
FOR 8 LEAD SOIC, FORCED CONVECTION $\mathbf{0}$ $\mathbf{1}$ $\mathbf{2 . 5}$ Meters per Second $102.5^{\circ} \mathrm{C} / \mathrm{W}$ $93.5^{\circ} \mathrm{C} / \mathrm{W}$ $88.6^{\circ} \mathrm{C} / \mathrm{W}$ Multi-Layer PCB, JEDEC Standard Test Boards				

FOR 8 LEAD TSSOP, FORCED CONVECTION

Meters per Second	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2 . 5}$
Multi-Layer PCB, JEDEC Standard Test Boards	$151.2^{\circ} \mathrm{C} / \mathrm{W}$	$145.9^{\circ} \mathrm{C} / \mathrm{W}$	$143.3^{\circ} \mathrm{C} / \mathrm{W}$
$\boldsymbol{\theta}_{\mathrm{JA}}$ by Velocity			

Table 8. ORDERING INFORMATION

Device	Package	Shipping †
NB3U1548CDG	SOIC-8 (Pb-Free)	96 Units / Tube
NB3U1548CDR2G	SOIC-8 (Pb-Free)	$3000 /$ Tape \& Reel
NB3U1548CDTR2G	TSSOP-8 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
8. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR,
2. COLLECTOR, \#
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14
PIN 1. N-SOURCE
2. N-GATE
. P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

ON Semiconductor and (0N) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

NOTES

1. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER
2. DIMENSION A DOES NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED $0.25(0.010)$ PROTRUS
5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
A	2.90	3.10	0.114	0.122	
B	4.30	4.50	0.169	0.177	
C	---	1.10	---	0.043	
D	0.05	0.15	0.002	0.006	
F	0.50	0.70	0.020	0.028	
G	0.65		BSC	0.026 BSC	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007		
K1	0.19	0.25	0.007	0.010	
L	6.40		BSC	0.252 BSC	
M	00°	8°	0°		

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code
A = Assembly Location
Y = Year
WW = Work Week

- $\quad=$ Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

DOCUMENT NUMBER:	98AON00697D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
STATUS:	ON SEMICONDUCTOR STANDARD		

ON Semiconductor ${ }^{\text {® }}$		DOCUMENT NUMBER: 98AON00697D
		PAGE 2 OF 2
ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION.	18 APR 2000
A	ADDED MARKING DIAGRAM INFORMATION. REQ. BY V. BASS.	13 JAN 2006
B	CORRECTED MARKING DIAGRAM PIN 1 LOCATION AND MARKING. REQ. BY C. REBELLO.	13 MAR 2006
C	REMOVED EXPOSED PAD VIEW AND DIMENSIONS P AND P1. CORRECTED MARKING INFORMATION. REQ. BY C. REBELLO.	20 JUN 2008

[^1]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK854BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7 ADCLK905BCPZ-WP

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

[^1]: ON Semiconductor and (ON) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages
 "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
 intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

