NB3U23C

1.2 V Dual Channel CMOS Buffer / Translator

Description

The NB3U23C is a 2-input, 2-output buffer/voltage translator for UFS (Universal Flash Storage) in portable consumer applications such as mobile phones, tablets, cameras, etc. This dual channel CMOS buffer accepts 1.8 V CMOS input and translates it to 1.2 V CMOS output. The device is powered using single supply of $1.2 \mathrm{~V} \pm 5 \%$.

The NB3U23C is packaged in 2 ultra-small 6-pin packages: the 6 pin SC70 and a 6 pin thin UDFN package.

Features

- Operating Frequency: 52 MHz (Max)
- Propagation Delay: 5 ns (Max)
- Low Standby Current: $<10 \mu \mathrm{~A}$ at $1.2 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$
- Low Phase Noise Floor: $-150 \mathrm{dBc} / \mathrm{Hz}$ (Typ)
- Rise/Fall Times (tr/tf): 2 ns (Max)
- ESD Protection Exceeds JEDEC Standards
- 2000 V Human-Body Model (JS-001-2012)
- 200 V Machine Model (JESD22-A115C)
- 1000 V Charged-Device Model (JESDC101E)
- Operating Supply Voltage Range (V_{DD}): $1.2 \mathrm{~V} \pm 5 \%$
- Operating Temperature Range (Industrial): $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- These are $\mathrm{Pb}-$ Free Devices

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

Figure 1. Simplified Logic Diagram

ORDERING INFORMATION
See detailed ordering and shipping information on page 4 of this data sheet.

NB3U23C

Figure 2. Pinout Diagram (Top Views)

Table 1. PIN DESCRIPTION

Number	Name	
1	IN1	Input Clock Signal - Channel 1
2	GND	Power Supply Ground (0 V)
3	IN2	Input Clock Signal - Channel 2
4	OUT2	Output - Channel 2
5	VDD	Power Supply Voltage
6	OUT1	Output - Channel 1

Table 2. ATTRIBUTES

Characteristic	Value	
ESD Protection	Human Body Model Machine Model Charge Device Model	2 kV min 200 Vmin 1 kV min
Moisture Sensitivity (Note 1)	Level 1	
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	120	
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test II		

1. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
$V_{D D}$	Supply Voltage			3.6	V
$\mathrm{V}_{\text {in }}$	Input Voltage			$-0.5 \leq \mathrm{V}_{1} \leq 2.5$	V
I_{D}	Output Current			25	mA
T_{A}	Operating Temperature Range, Industrial			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 Ifpm 500 Ifpm (Note 3) 0 Ifpm 500 Ifpm (Note 3)	SC70-6 UDFN-6	$\begin{aligned} & 210 \\ & 126 \\ & 245 \\ & 172 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	(Note 3)	$\begin{aligned} & \text { SC70-6 } \\ & \text { UDFN-6 } \end{aligned}$	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder			260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
2. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and not valid simultaneously. If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected.
3. JEDEC standard multilayer board - 2S2P (2 signal, 2 power).

Table 4. ELECTRICAL CHARACTERISTICS (VDD $=1.2 \pm 5 \% \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Characteristic	Conditions	Min	Typ	Max	Unit
DIDD	Power Supply Current (Single Channel Switching @ 52 MHz)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \end{aligned}$		$\begin{gathered} 2.5 \\ 1.5 \\ 1 \end{gathered}$		mA
	Power Supply Current (Both Channels Switching @ 52 MHz)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \end{aligned}$		5 3 2		mA
$\mathrm{l}_{\text {off }}$	Standby Current	$\mathrm{Vi}=\mathrm{V}_{\mathrm{IH}}$ Max or GND; $V_{D D}=1.2 \mathrm{~V}$, No Output Load			10	$\mu \mathrm{A}$
V_{IH}	Input High Voltage		0.65 * VDD		1.98	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		0		0.35 * VDD	V
V_{OH}	Output High Voltage	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{gathered}$	0.75 * VDD		VDD	V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{gathered}$	0		0.25 * VDD	V
$\mathrm{C}_{\text {in }}$	Input Capacitance				5	pF
$\mathrm{F}_{\mathrm{clk}}$	Operating Frequency Range		0		52	MHz
$t_{\text {PD }}$	Propagation Delay	INx to OUTx $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$			5	ns
	Phase Noise Floor Density (Notes 4 and 5)	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{gathered}$		-150		$\mathrm{dBc} / \mathrm{Hz}$
	Additive RMS Phase Jitter (Notes 5 and 6)	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{gathered}$ Offset Frequency Range: 50 kHz to 10 MHz		0.15	0.25	ps
DC	Output Duty Cycle (Note 7)	Input Duty Cycle = 50\%, Min Input Slew Rate $=1 \mathrm{~V} / \mathrm{ns}$	45		55	\%
tr/tf	Output Rise/Fall Times	$\begin{gathered} 0.2 * V_{\mathrm{DD}} \text { to } 0.8 * \mathrm{VDD} \\ \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{gathered}$			2	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. White noise floor.
5. This parameter refers to the random jitter only.
6. The output RMS phase jitter can be calculated using the following equation:
$(\text { Output RMS Phase Jitter })^{2}=\left(\right.$ Input RMS Phase Jitter) ${ }^{2}+\left(\right.$ Additive RMS Phase Jitter) ${ }^{2}$
7. Measured with input voltage swing from 0 V to 1.8 V .

NB3U23C

Figure 3. Typical Test Setup for Evaluation

Figure 4. Typical Phase Noise Plot at 50 MHz Carrier Frequency

ORDERING INFORMATION

Device	Package	Shipping †
NB3U23CSQTCG	SC-70-6 (Pb-Free)	$3000 /$ Tape \& Reel
NB3U23CMNTAG	UDFN6 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 2. CONTROLLING DIMENSION: MILLIMETERS.
2. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.
3. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF DIMENSIONS D AND E1 AT THE OUT
THE PLASTIC BODY AND DATUM H.
THE PLASTIC BODY AND DATUM H.
4. DATUMS A AND B ARE DETERMINED AT DATUM H.
5. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE DIMENSIONS b AND c APPLY TO THE FLAT SEC
LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
6. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

DIM	MILLIMETERS			INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	---	---	1.10	---	---	0.043
A1	0.00	--	0.10	0.000	---	0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.15	0.20	0.25	0.006	0.008	0.010
C	0.08	0.15	0.22	0.003	0.006	0.009
D	1.80	2.00	2.20	0.070	0.078	0.086
E	2.00	2.10	2.20	0.078	0.082	0.086
E1	1.15	1.25	1.35	0.045	0.049	0.053
e	0.65 BSC			0.026 BSC		
L	0.26	0.36	0.46	0.010	0.014	0.018
L2	0.15 BSC			0.006 BSC		
aaa	0.15			0.006		
bbb	0.30			0.012		
ccc	0.10			0.004		
ddd	0.10			0.004		
	GENERIC					
	MARKING DIAGRAM*					

XXX $=$ Specific Device Code
M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary depending upon manufacturing location.
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 1 OF 2 |

[^0] rights of others.

SC-88/SC70-6/SOT-363

CASE 419B-02
ISSUE Y
STYLE 1:
PIN 1. EMITTER 2
2. BASE 2
3. COLLECTOR 1
4. EMITTER 1
5. BASE 1
6. COLLECTOR 2

STYLE 7:
PIN 1. SOURCE 2
2. DRAIN 2
3. GATE 1
4. SOURCE 1
5. DRAIN 1
6. GATE 2

STYLE 13:
PIN 1. ANODE
2. N/C
3. COLLECTOR
4. EMITTER
5. BASE
6. CATHODE

STYLE 19:
PIN 1. IOUT
2. GND
3. GND
4. V CC
5. V EN
6. V REF
STYLE 25:
PIN 1. BASE 1
2. CATHODE
3. COLECTOR 2
4. BASE 2
5. EMITTER
6. COLLECTOR 1
STYLE 2:

CANCELLED
STYLE 8:
CANCELLED

STYLE 14:
PIN 1. VREF
2. GND
3. GND
4. IOUT
5. VEN
6. VCC

STYLE 20:
PIN 1. COLLECTOR
2. COLLECTOR
3. BASE
4. EMITTER
5. COLLECTOR
6. COLLECTOR
STYLE 26:
PIN 1. SOURCE 1
2. GATE 1
3. DRAAN 2
4. SOURCE 2
5. GATE 2
6. DRAIN 1

STYLE 3 : CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6 : PIN 1. ANODE 2 2. N / C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:
PIN 1. EMITTER 2	PIN 1. SOURCE 2	PIN 1. CATHODE 2	PIN 1. ANODE 2
2. EMITTER 1	2. SOURCE 1	2. CATHODE 2	2. ANODE 2
3. COLLECTOR 1	3. GATE 1	3. ANODE 1	3. CATHODE 1
4. BASE 1	4. DRAIN 1	4. CATHODE 1	4. ANODE 1
5. BASE 2	5. DRAIN 2	5. CATHODE 1	5. ANODE 1
6. COLLECTOR 2	6. GATE 2	6. ANODE 2	6. CATHODE 2
STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:
PIN 1. ANODE 1	PIN 1. BASE 1	PIN 1. BASE 1	PIN 1. VIN1
2. ANODE 2	2. EMITTER 2	2. EMITTER 1	2. VCC
3. ANODE 3	3. COLLECTOR 2	3. COLLECTOR 2	3. VOUT2
4. CATHODE 3	4. BASE 2	4. BASE 2	4. VIN2
5. CATHODE 2	5. EMITTER 1	5. EMITTER 2	5. GND
6. CATHODE 1	6. COLLECTOR 1	6. COLLECTOR 1	6. VOUT1
STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:
PIN 1. ANODE 1	PIN 1. D1 (i)	PIN 1. Vn	PIN 1. CATHODE
2. N / C	2. GND	2. CH 1	2. ANODE
3. ANODE 2	3. D2 (i)	3. Vp	3. CATHODE
4. CATHODE 2	4. D2 (c)	4. N/C	4. CATHODE
5. N/C	5. VBUS	5. CH 2	5. CATHODE
6. CATHODE 1	6. D1 (c)	6. N/C	6. CATHODE
STYLE 27:	STYLE 28 :	STYLE 29:	STYLE 30:
PIN 1. BASE 2	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. SOURCE 1
2. BASE 1	2. DRAIN	2. ANODE	2. DRAIN 2
3. COLLECTOR 1	3. GATE	3. COLLECTOR	3. DRAIN 2
4. EMITTER 1	4. SOURCE	4. EMITTER	4. SOURCE 2
5. EMITTER 2	5. DRAIN	5. BASE/ANODE	5. GATE 1
6. COLLECTOR 2	6. DRAIN	6. CATHODE	6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 2 OF 2 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

UDFN6 1.2x1.4, 0.4P
CASE 517CW
ISSUE O
DATE 09 JAN 2014

DETAIL A OPTIONAL TERMINAL CONSTRUCTIONS

DETAIL B OPTIONAL construction

NOTES

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIIENSION b APPLES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND $0.25 M M$ FROM THE TERMINAL TIP.

DIM	MILLIMETERS	
	MIN	MAX
A	0.45	0.55
A1	0.00	0.05
A3	0.13 REF	
b	0.15	
D	0.25	
E	1.40 BSC	
e	0.40 BSC	
L	0.50	0.60
L1	---	0.15

GENERIC MARKING DIAGRAM*

	${ }_{0} \mathrm{XM}$
X	$=$ Specific Device Code
M	$=$ Month Code

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\boldsymbol{\bullet}$ ", may or may not be present.

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON81510F | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UDFN6 1.2X1.4, 0.4P | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK854BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7 ADCLK905BCPZ-WP

[^0]: ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

