NB3N1200KMNGEVB, NB3W1200LMNGEVB

NB3N1200K/NB3W1200L Evaluation Board User's Manual

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

EVAL BOARD USER'S MANUAL

Introduction

The NB3N1200KMNGEVB and the NB3W1200LMNG EVB evaluation boards were developed with a common PCB layout design to accommodate the NB3N1200K (standard HCSL outputs) and the NB3W1200L (HCSL Push-Pull outputs) devices. Each board comes fully assembled and tested and is ready to evaluate in the lab. This evaluation board was designed to provide a flexible and convenient platform to quickly evaluate, characterize and verify the operation of the NB3N1200K or NB3W1200L devices. To minimize the board size, six differential outputs are accessed with SMA connectors. The other six differential outputs are loaded, terminated and can be monitored with a high impedance probe as explained later in the manual.

The NB3N1200K Evaluation Board schematic is the same as the NB3W1200L schematic except the "1200L" has some components depopulated (DNI) per the "1200L" BOM.

- The NB3W1200LMNGEVB does not have RP resistors installed on its differential Push-Pull outputs.
- The NB3W1200LMNGEVB does not have FB_OUT/FB_OUT\# resistors installed.
- The NB3W1200LMNGEVB does not have R REF resistor R107 installed.

This manual should be used in conjunction with the device datasheet which contains full technical details on the device specifications and operation.
This evaluation board manual contains:

- Information on the NB3N1200K/NB3W1200L Evaluation Board
- Assembly Instructions
- Test and Measurement Setup Procedures
- Board Schematic and Bill of Materials

Figure 1. NB3N1200KMNGEVB and NB3W1200LMNGEVB Evaluation Board

Pre-Power-Up

1. The NB3N1200K and NB3W1200L have positive power supply pins VDD and VDDIO. Connect power supply cables to VDD, VDDIO and GND banana jacks; (do not turn power on, yet)
2. Connect a signal generator to the SMA connectors for the CLK_IN \& CLK_IN\# inputs.
3. 50 -ohm termination resistors are installed for a signal generator on the board. Set appropriate input signal levels; (HCSL input, VIL $=0 \mathrm{~V}$, VIH $=700 \mathrm{mV}$, Frequency 100 or 133.33 MHz)
4. Ensure the PWRGD/PWRDN\# pin is in the Low state before power up (PWRDN\#). There is a jumper on pin 6 to easily select between High and Low. See Figure 8.
5. The 100M_133M\# and HBW_BYPASS_LBW pins need to be hardware selected with jumpers. See Figures 4 and 7.
6. To monitor the DIF_n/DIF_n\# outputs, connect the DIF_n/DIF_n\# outputs to the appropriate oscilloscope.

Table 1. POWER SUPPLY CONNECTIONS

Device Pin Power Supply Connector	Power Supply
VDD	3.3 V
VDDIO	1.05 V to 3.3 V
GND	0 V

Figure 2. Power Supply Connections

Figure 3. Typical Lab Test Set-Up

Power -Up Sequence

1. Turn on power supply, 3.3 V (VDD \& VDDIO).
2. Move PWRGD/PWRDN\# jumper from Low to logic High, PWRGD position.
3. Turn on the Differential Clock Signal for the CLK_IN inputs. The differential Clock signal for the CLK_IN inputs can be ON or active before or after PWRGD is set HIGH.
4. Monitor DIF_n/DIF_n\# outputs on oscilloscope.

Optional

Graphical User Interface (see page 7)

There is a stand-alone Graphical User Interface software package and user's manual that will interface with the DUT via the USB connector.

1. Connect the USB port on the evaluation board to a USB port on the PC via cable.
2. See the stand-alone GUI instructions document.
3. Allow Windows to install the necessary drivers for the eval board USB interface hardware.
4. Start the GUI program.

NB3N1200KMNGEVB, NB3W1200LMNGEVB

Power Supplies

Each VDD, VDDIO and GND power supply has a separate side-launch banana jack located on bottom side. This board is capable of measuring device IDD \& IDDIO separately.

Board Layer \#2 $=$ SMA Ground $=$ Device GND $=0 \mathrm{~V}$.
GND Banana Jack = negative power supply for DUTGND and SMAGND.
Exposed Pad (EP): The exposed pad footprint on the board is soldered to the exposed pad of the QFN-64 package, and is electrically connected to GND power supply.

Board Layer \#3 = VDD and VDDIO Power Supplies
VDD = positive power supply for core and inputs;
VDD/VDDA/VDDR (pins \#1, 8, 24, 40, 57)
VDDIO = positive power supply for outputs; VDDIO (pins \#25, 32, 49, 56)

VDD \& VDDIO have the power supply filtering per datasheet by the banana jacks.

All VDD/VDDA/VDDR/VDDIO device pins have a $0.1 \mu \mathrm{~F}$ bypass capacitor installed on top side next to package pins.

Control Pins

Each control pin can be managed manually with a H/L jumper header; $\mathrm{H}=\mathrm{VDD}, \mathrm{L}=\mathrm{GND}$.

Tri-Level Input Pins - HBW_BYPASS_LBW\#, SAO and SA1

The three tri-level input pins, HBW_BYPASS_LBW\#, SA0 and SA1, have selectable (with jumper) 4.7 k -ohm pull-up to VDD and 4.7 k-ohm pull-down to GND resistors; No jumper defaults to open/float.

- For a HIGH Level - Put Jumper to High
- For a LOW Level - Put Jumper to Low
- For a MID Level - Put Jumper to both High and Low; this will Enable both Pull-up and Pull-down Resistors

HBW_BYPASS_LBW\#

At J65 and J66 headers, there is a $4.7 \mathrm{k} \Omega$ pull-up to VDD and a $4.7 \mathrm{k} \Omega$ pull-down resistor to GND for manual control. See Figure 4.

$S A O \& S A 1$

At J67 and J69 headers, there are $4.7 \mathrm{k} \Omega$ pull-ups to VDD and at J68 and J 70 , there are $4.7 \mathrm{k} \Omega$ pull-down resistors to GND for manual control. See Figure 5.

Figure 4. HBW_BYPASS_LBW\# Schematic/PCB Configuration

Figure 5. SA0 \& SA1 Schematic/PCB Configuration

NB3N1200KMNGEVB, NB3W1200LMNGEVB

Control Pins (Continued)

OE_n\# Pins (Output Enable/Disable Function)
Six of the twelve differential outputs that have metal traces going to SMA connectors have OE_n\# pins on the left side of the board that can be controlled manually using the convenient High/Low OE_n\# jumpers. See Figure 6.

All twelve of the $\mathrm{OE}_{-} \mathrm{n}$ \#s can be controlled individually/ automatically by using the software GUI. GUI control is accomplished via the USB when the OE_n\# jumper is installed on the middle header position. See Figure 6.

Figure 6. OE_n\# Pins Schematic/PCB Configuration
100M_133M\# - Frequency Selection (J55)
The 100M_133M\# frequency selection pin can be controlled manually with the High/Low header jumper J55, $\mathrm{H}=100 \mathrm{MHz}, \mathrm{L}=133 \mathrm{MHz}$.

Figure 7. 100M_133M\# Pin Schematic/PCB Configuration
PWRGD/PWRDN\# (J56)
The PWRGD/PWRDN\# pin can be controlled manually with the High/Low header jumper J56; H = PWRGD, L = PWRDN\#.

Figure 8. PWRGD/PWRDN\# Pin Schematic/PCB Configuration

NB3N1200KMNGEVB, NB3W1200LMNGEVB

Differential Clock Inputs and Outputs

CLK_IN \& CLK_IN\# - Differential Clock Inputs

The differential Clock input traces, CLK_IN/CLK_IN\#, are equal length routed straight from the SMA connectors on the left side directly to the DUT; there are no vias on metal traces.

CLK_IN \& CLK_IN\# have resistor pads (R51 \& R52) to GND to terminate a signal generator, if used. 50 -ohm resistors are installed. Remove these resistors if CLK_IN \& CLK_IN\# are driven by another IC device.

DIF_n and DIF_n\# - Differential Outputs

NB3N1200KMNGEVB and NB3W1200LMNGEVB were designed with a flexible PCB layout configuration to measure the differential HCSL (1200K) or Push-Pull (1200L) outputs with a $50-\mathrm{ohm}$ scope head or high-impedance FET probe. (See Output Layout in Figures 8 and 9)

Six of the twelve differential outputs are designed to have equal length metal traces from the device pins to the SMA connectors.
The other six differential outputs have shortened metal traces, do not have SMA connectors and can be observed with a high-impedance probe on the metal pads provided.
Each DIF_n/DIF_n\# output has a provision for $\mathrm{C}_{\text {Load }}$; $\mathbf{2} \mathbf{~ p F}$ capacitors are installed on all outputs.

Rs \& Rp pads are located close to the DUT. Rs $=33-\Omega$ is installed for both the NB3N1200K and NB3W1200L.

NB3N1200K (HCSL Outputs)

RP is not installed on the six output pair with long metal traces to SMA connectors; Use $50-\Omega$ to GND of the oscilloscope head for RP.
Rp is installed ($50-\Omega$ to GND) on the short metal traces without SMA connectors and will use $\mathrm{Hi}-\mathrm{Z}$ probes.

NB3W1200L (Push-Pull Outputs) Rp is not installed

Table 2. NB3N1200KMNGEVB AND NB3W1200LMNGEVB OUTPUT LOAD AND TERMINATION VS. OSCILLOSCOPE MEASUREMENT

Device	Output Traces	Rs	Rp	CLoad	Scope
1200 K	Long	$33-\Omega$	Open (DNI)	2 pF	$50-\Omega$
1200 K	Short	$33-\Omega$	$50-\Omega$	2 pF	Hi-Z
1200 L	Long or Short	$33-\Omega$	Open (DNI)	2 pF	Hi-Z

Figure 9. Differential Outputs Schematic/PCB Configuration: Long vs. Short Metal Traces

NB3N1200KMNGEVB, NB3W1200LMNGEVB

HCSL Output Measurement

HCSL outputs are typically terminated with $50-\Omega$ to ground. Measuring HCSL outputs can be easily accomplished by:

NB3N1200K (HCSL Outputs) - 50- Ω Oscilloscope Head
With R_{P} removed from board, connect the HCSL outputs through the SMA connectors to the $50-\Omega$ internal impedance of the oscilloscope sampling head.

NB3N1200K (HCSL Outputs) - Use Hi-Z Probe

With R_{P} installed, use a high-impedance probe on the output's metal trace. Holes for headers to connect to Hi-Z probes are available, but the header pins are not installed.

- Single-ended Hi-Z probes or,
- Differential Hi-Z probe; (see layout below)

NB3W1200L (Push-Pull Outputs) - Use Hi-Z Probe

Rp is not installed

- A $0-\Omega$ series resistor is installed between the end of the transmission line and the SMA connector. This resistor can be removed, if needed, to eliminate any SMA impedance/stub when using Hi-Z probes.
- As a feature, an optional component can be installed on each output, ie. additional capacitance loading etc.

The following figures describe the boards' output features:

Figure 10. Differential Outputs Schematic/PCB Configuration: Use Hi-Z Probe Scope for NB3W1200L

Misc. Pins

FB_OUT \& FB_OUT\# - External Termination of \bar{F} eedback Pins

FB_OUT \& FB_OUT\# have convenient "test point anvils" to monitor these pins with $\mathrm{Hi}-\mathrm{Z}$ probe.

NB3N1200K (HCSL):
Since the FB_OUT \& FB_OUT\# pins do not drive transmission lines (no SMAs), the board layout has these pins loaded/terminated at the DUT per datasheet; $83-\Omega$ to GND is installed for the $100-\Omega$ board.

NB3W1200L (Push-Pull):
FB_OUT \& FB_OUT\# resistors are not installed.

IREF Pin

NB3N1200K (HCSL):
The $\mathrm{R}_{\text {REF }}$ resistor (R107) to GND for the HCSL output part device.
$R_{\text {REF }}=475-\Omega$ is installed for the $100-\Omega$ board.
NB3W1200L (Push-Pull)
$\mathrm{R}_{\text {REF }}$ is not installed for the NB3W1200L device.

NB3N1200KMNGEVB, NB3W1200LMNGEVB

Graphical User Interface (GUI)

USB \& $I^{2} C / S M B u s$ Interface

The NB3N1200K EVB has an on-board $\mathrm{I}^{2} \mathrm{C} /$ SMBus interface circuitry located in the upper left section of the board.

This circuitry will interface with the software program and the device via the SDA and SCL input pins, and can control all twelve of the OE_n\# pins, PLL Mode and Frequency Select directly from the GUI.

$S C L \& S D A$

The SMBus Clock (SCL) and Data (SDA) pins are exercised through the on-board $\mathrm{I}^{2} \mathrm{C}$ interface.

In order to enable the $\mathrm{I}^{2} \mathrm{C}$ control of the DUT, header jumpers J63 \& J64 must be shorted.

The $I^{2} \mathrm{C} /$ SMBus interface circuitry is powered separately from the USB type-B connection and is isolated from device VDD and VDDIO.
The SDA and SCL pins can also be externally accessed by an off-board programmer, allowing other SMBus emulators to be used to program the DUT. If used, remove both jumpers J63 \& J64. "Test-point anvils" TP5 \& TP6 are available for external control of the device with the use with mini-grabber cables.

BOARD FEATURES

Single Board Design/Layout for NB3N1200K or NB3W1200L:

- The single board design and layout accommodates the electrical characterization of either the NB3N1200K (standard HCSL outputs) or the NB3W1200L (HCSL Push-Pull outputs).
- Incorporates on-board $\mathrm{I}^{2} \mathrm{C} /$ SMBus interface circuitry powered from a USB connection, minimizing cabling.
- Convenient and compact board layout.
- 3.3 V power supply device operation.
- Differential inputs/outputs signals are accessed via SMA connectors or high impedance probes.

Other Board Features

There are no vias on the high-speed differential I/O metal traces so as to eliminate via impedance and stub affects.

Board stand-offs are installed.

Board Layout

The NB3N1200K QFN-64 Evaluation Board provides a high bandwidth, $50-\Omega$ controlled trace impedance
environment (100- Ω line-to-line differential) and is implemented in four layers.

- All layers are constructed with FR4 dielectric material.
- The first layer is the primary signal layer, including all of the differential inputs and outputs.
- The second layer is the ground plane. It is dedicated for the DUT ground/SMA ground plane.
- The third layer is dedicated as the power plane. A portion of this $3^{\text {rd }}$ layer is designated for the device VDD and VDDIO power planes.
- The fourth layer contains control lines, power supply banana jacks and device power pin bypass capacitors.

Layer Stack

- L1 (Top) Signal
- L2 Device Ground and SMA Ground
- L3 VDD, VDDIO (Separate Device Power Supplies)
- L4 (Bottom), Power Supply By-pass Capacitors, Control Pin Traces and Banana Jacks

4-LAYER STACK-UP

Figure 11. NB3N1200KMNGEVB and NB3W1200LMNGEVB Evaluation Board Layer Stack-Up

NB3N1200KMNGEVB, NB3W1200LMNGEVB

NB3N1200K/NB3W1200L EVALUATION BOARD SCHEMATIC

Figure 12. NB3N1200KMNGEVB \& NB3W1200LMNGEVB Board Schematic

Figure 13. USB Circuitry Schematic

Table 3. BILL OF MATERIALS FOR THE NB3N1200KMNGEVB EVALUATION BOARD

Designator	Qty.	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number	Substitution Allowed	Lead Free
B1	1	PC Board, Demo Board	-	-	-	-	-	-	Yes
$\begin{gathered} \text { C1-C21, C23, } \\ \text { C26, C31 } \end{gathered}$	24	Capacitor	2.0 pF	12\%	0402	TDK	C1005C0G1H020C	Yes	Yes
C22, C32	2	Capacitor	$10 \mu \mathrm{~F}$	10\%	1206	Vishay	TR3A106K010C2000	Yes	Yes
$\begin{gathered} \mathrm{C} 24, \mathrm{C} 25, \\ \mathrm{C} 2-\mathrm{C} 30, \\ \mathrm{C} 34-\mathrm{C} 41, \\ \mathrm{C} 43-\mathrm{C} 45, \mathrm{C} 47, \\ \mathrm{C} 49, \mathrm{C} 52, \mathrm{C} 58 \end{gathered}$	20	Capacitor	100 nF	10\%	0402	AVX	0402ZD104KAT2A	Yes	Yes
C27, C33	2	Capacitor	$10 \mu \mathrm{~F}$	20\%	0603	TDK	C1608X5R1A106M	Yes	Yes
C42, C46, C48	3	Capacitor	$4.7 \mu \mathrm{~F}$	20\%	0402	TDK	C1005X5R0J475M	Yes	Yes
C50	1	Capacitor	10 nF	10\%	0402	AVX	0402YC103KAT2A	Yes	Yes
C51, C53	2	Capacitor	10 pF	5\%	0402	Murata	GRM1555C1H100JZ01D	Yes	Yes
C55-C57, C59	4	Capacitor	$1 \mu \mathrm{~F}$	20\%	0402	Murata	GRM155R61A105ME15D	Yes	Yes
D1	1	ESD Suppressor 4 CHANNEL PROTECTION	PACDN004	-	SOT-143	ON Semiconductor	PACDN004SR	No	Yes
FB1, FB2	2	EMI Filter Bead	600Ω	-	0603	Murata	BLM18KG601SN1D	Yes	Yes
FB3, FB4	2	EMI Filter Bead	600Ω	25\%	0402	Murata	BLM15AG601SN1D	Yes	Yes
$\begin{gathered} \hline \text { J3-J6, J11-J14, } \\ \text { J19-J22, J37, } \\ \text { J38 } \end{gathered}$	14	$\begin{aligned} & \text { RF Connectors } \\ & \text { PC END MT } \\ & \text { JCK GLD } \\ & .062^{\prime \prime} \end{aligned}$	-	-	SMA END LA UNCH__0.062"	Johnson Components	142-0701-801	Yes	Yes
$\begin{aligned} & \text { J43, J44, J47, } \\ & \text { J48, J51, J52 } \end{aligned}$	6	Header	-	-	Header Thru-Hole 2×3	FCI	67996-206HLF	Yes	Yes
J56, J55	2	Header	Header 3-pin	-	3-pin Header, thru-hole 0.1	3M	961103-6404-AR	Yes	Yes
J59	1	Banana Jack, Thru-Hole, Red	-	-	$\begin{aligned} & \text { CON2 571-050 } \\ & \text { O_DELTRON } \end{aligned}$	Deltron	571-0500	Yes	Yes
J60	1	Banana Jack, Thru-Hole, Yellow	-	-	$\begin{aligned} & \text { CON2_571-050 } \\ & \text { O_DELTRON } \end{aligned}$	Deltron	571-0700	Yes	Yes
J61	1	Banana Jack, Thru-Hole, Black	-	-	$\begin{aligned} & \text { CON2_571-050 } \\ & \text { O_DELTRON } \end{aligned}$	Deltron	571-0100	Yes	Yes
J62	1	CONN USB TYPE B R/A HORIZ SMD	-	-	SMT USB Conn B	On Shore Technology	USB-B1SMHSW6	Yes	Yes
J63-J70	8	Header	Header 2-pin	-	2-pin Header, thru-hole 0.1	3M	961102-6404-AR	Yes	Yes
LED1	1	$\begin{aligned} & \text { LED GREEN } \\ & \text { CLEAR } 0603 \\ & \text { SMD } \end{aligned}$	LED, Green	-	0603 LED	Lite-On	LTST-C190KGKT	Yes	Yes
$\begin{gathered} \text { M1-M8, M10, } \\ \text { M12, M14, } \\ \text { M17, M19, } \\ \text { M21, M23-M25 } \end{gathered}$	17	CONN JUMPER SHORTING .100" GOLD	Shunt	-	$\begin{gathered} 2.54 \times 5.97 \\ (\mathrm{~mm}) \end{gathered}$	Sullins	QPC02SXGN-RC	Yes	Yes
$\begin{gathered} \text { M9, M11, M13, } \\ \text { M15 } \end{gathered}$	4	$\begin{gathered} \text { STANDOFF } \\ 4-40 \\ \text { ALUMINUM } \\ 5 / 8^{\prime \prime} \end{gathered}$	$\begin{gathered} \hline \text { Standoff, } \\ 4-40 \\ 1 / 4 \times 5 / 8 \end{gathered}$	-	-	Keystone	1808	Yes	Yes
M16, M18, M20, M22	4	$\begin{gathered} \text { Screw, } \\ 4-40 \times 0.25, \\ \text { PHP } \end{gathered}$	-	-	-	Building Fasteners	PMS 4400025 PH	Yes	Yes
R1,R5,R9, R13, R17, R21, R25, R29, R33, R37, R41, R45, R49, R55, R61, R65, R69, R73, R77, R83, R89, R95, R99, R103	24	Resistor	33Ω	1\%	0402	Panasonic	ERJ-2RKF33R0X	Yes	Yes

Table 3. BILL OF MATERIALS FOR THE NB3N1200KMNGEVB EVALUATION BOARD (continued)

| Designator |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Qty.

Table 4. BILL OF MATERIALS FOR THE NB3W1200LMNGEVB EVALUATION BOARD

Designator	Qty.	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number	Substitution Allowed	Lead Free
B1	1	PC Board, Demo Board	-	-	-	-	-	-	Yes
$\begin{gathered} \text { C1-C21, C23, } \\ \text { C26, C31 } \end{gathered}$	24	Capacitor	2.0 pF	12\%	0402	TDK	C1005C0G1H020C	Yes	Yes
C22, C32	2	Capacitor	$10 \mu \mathrm{~F}$	10\%	1206	Vishay	TR3A106K010C2000	Yes	Yes
C24, C25, C28-C30, C34-C41, C43-C45, C47, C49, C52, C58	20	Capacitor	100 nF	10\%	0402	AVX	0402ZD104KAT2A	Yes	Yes
C27, C33	2	Capacitor	$10 \mu \mathrm{~F}$	20\%	0603	TDK	C1608X5R1A106M	Yes	Yes
C42, C46, C48	3	Capacitor	$4.7 \mu \mathrm{~F}$	20\%	0402	TDK	C1005X5R0J475M	Yes	Yes
C50	1	Capacitor	10 nF	10\%	0402	AVX	0402YC103KAT2A	Yes	Yes
C51, C53	2	Capacitor	10 pF	5\%	0402	Murata	GRM1555C1H100JZ01D	Yes	Yes
C55-C57, C59	4	Capacitor	$1 \mu \mathrm{~F}$	20\%	0402	Murata	GRM155R61A105ME15D	Yes	Yes
D1	1	ESD Suppressor 4 CHANNEL PROTECTION	PACDN004	-	SOT-143	ON Semiconductor	PACDN004SR	No	Yes
FB1, FB2	2	EMI Filter Bead	600Ω	-	0603	Murata	BLM18KG601SN1D	Yes	Yes
FB3, FB4	2	EMI Filter Bead	600Ω	25\%	0402	Murata	BLM15AG601SN1D	Yes	Yes
$\begin{gathered} \text { J3-J6, J11-J14, } \\ \text { J19-J22, J37, } \\ \text { J38 } \end{gathered}$	14	$\begin{gathered} \text { RF Connectors } \\ \text { PC END MT } \\ \text { JCK GLD } \\ .062^{\prime \prime} \end{gathered}$	-	-	SMA END LA UNCH__0.0 $\overline{6} 2^{\prime \prime}$	Johnson Components	142-0701-801	Yes	Yes
$\begin{aligned} & \text { J43, J44, J47, } \\ & \text { J48, J51, J52 } \end{aligned}$	6	Header	-	-	Header Thru-Hole 2×3	FCI	67996-206HLF	Yes	Yes
J56, J55	2	Header	Header 3-pin	-	3-pin Header, thru-hole 0.1	3M	961103-6404-AR	Yes	Yes
J59	1	Banana Jack, Thru-Hole, Red	-	-	$\begin{aligned} & \text { CON2_571-050 } \\ & \text { O_DELTRON } \end{aligned}$	Deltron	571-0500	Yes	Yes
J60	1	Banana Jack, Thru-Hole, Yellow	-	-	$\begin{aligned} & \text { CON2 571-050 } \\ & \text { O_DELTRON } \end{aligned}$	Deltron	571-0700	Yes	Yes
J61	1	Banana Jack, Thru-Hole, Black	-	-	$\begin{aligned} & \text { CON2_571-050 } \\ & \text { O_DELTRON } \end{aligned}$	Deltron	571-0100	Yes	Yes
J62	1	CONN USB TYPE B R/A HORIZ SMD	-	-	SMT USB Conn B	On Shore Technology	USB-B1SMHSW6	Yes	Yes
J63-J70	8	Header	Header 2-pin	-	2-pin Header, thru-hole 0.1	3M	961102-6404-AR	Yes	Yes
LED1	1	$\begin{gathered} \text { LED GREEN } \\ \text { CLEAR } 0603 \\ \text { SMD } \end{gathered}$	LED, Green	-	0603 LED	Lite-On	LTST-C190KGKT	Yes	Yes
$\begin{gathered} \text { M1-M8, M10, } \\ \text { M12, M14, } \\ \text { M17, M19, } \\ \text { M21, M23-M25 } \end{gathered}$	17	CONN JUMPER SHORTING .100" GOLD	Shunt	-	$\begin{gathered} 2.54 \times 5.97 \\ (\mathrm{~mm}) \end{gathered}$	Sullins	QPC02SXGN-RC	Yes	Yes
$\begin{gathered} \text { M9, M11, M13, } \\ \text { M15 } \end{gathered}$	4	$\begin{gathered} \text { STANDOFF } \\ 4-40 \\ \text { ALUMINUM } \\ 5 / 8^{\prime \prime} \end{gathered}$	$\begin{gathered} \hline \text { Standoff, } \\ 4-40 \\ 1 / 4 \times 5 / 8 \end{gathered}$	-	-	Keystone	1808	Yes	Yes
M16, M18, M20, M22	4	$\begin{gathered} \text { Screw, } \\ 4-40 \times 0.25, \\ \text { PHP } \end{gathered}$	-	-	-	Building Fasteners	PMS 4400025 PH	Yes	Yes
R1, R5, R9, R13, R17, R21, R25, R29, R33, R37, R41, R45, R49, R55, R61, R65, R69, R73, R77, R83, R89, R95, R99, R103	24	Resistor	33Ω	1\%	0402	Panasonic	ERJ-2RKF33R0X	Yes	Yes

Table 4. BILL OF MATERIALS FOR THE NB3W1200LMNGEVB EVALUATION BOARD (continued)

Designator	Qty.	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number	Substitution Allowed	Lead Free
R3, R7, R11, R15, R19, R23, R27, R31, R35, R39, R43, R47, R53, R59, R63, R67, R71, R75, R80, R86, R91, R97, R101, R105	0	DNI	-	-	0402	-	-	-	Yes
R10, R14, R18, R22, R42, R46, R50, R56, R78, R84, R90, R96	12	Resistor	0Ω	Jumper	0402	Vishay	CRCW04020000ZOED	Yes	Yes
R51, R52	2	Resistor	49.9Ω	1\%	0603	Panasonic	ERJ-3EKF49R9V	Yes	Yes
$\begin{aligned} & \text { R57, R58, R79, } \\ & \text { R82, R85, R88 } \end{aligned}$	6	Resistor	$4.7 \mathrm{k} \Omega$	5\%	0603	Panasonic	ERJ-3GEYJ472V	Yes	Yes
R93, R94	2	Resistor	2.2Ω	5\%	0603	Panasonic	ERJ-3GEYJ2R2V	Yes	Yes
R107	1	Resistor	475Ω	1\%	0402	Panasonic	ERJ-2RKF4750X	Yes	Yes
R108, R109	0	DNI	-	-	0402	-	-	-	Yes
$\begin{gathered} \text { R110, R111, } \\ \text { R114, } \\ \text { R116-R118 } \end{gathered}$	6	Resistor	$10 \mathrm{k} \Omega$	5\%	0402	Panasonic	ERJ-2GEJ103X	Yes	Yes
R112, R113, R121-R132	14	Resistor	0Ω	Jumper	0201	Panasonic	ERJ-1GEOROOC	Yes	Yes
R115	1	Resistor	$12 \mathrm{k} \Omega$	1\%	0402	Panasonic	ERJ-2RKF1202X	Yes	Yes
R119	1	Resistor	470Ω	5\%	0402	Panasonic	ERJ-2GEJ471X	Yes	Yes
R120	1	Resistor	$2.2 \mathrm{k} \Omega$	5\%	0402	Panasonic	ERJ-2GEJ222X	Yes	Yes
TP1-TP6, TP13, TP14	8	Test Point	Test Point, SMT	-	TP_5015 KEYSTONE	Keystone	5015	Yes	Yes
U1	1	-	NB3W1200L	-	64-QFN 9 mm	ON Semiconductor	NB3W1200LMNG	No	Yes
U2	1	-	FT2232H	-	64-QFN	FTDI	FT2232HQ-REEL	No	Yes
U3	1	-	93LC46B	-	8-TSSOP	Microchip	93LC46BT-I/ST	No	Yes
U4	1	-	$\begin{gathered} \text { NCP4586, } \\ 3.3 \mathrm{~V} \end{gathered}$	-	SOT-23-5	ON Semiconductor	NCP4586DSN33T1G	No	Yes
Y1	1	-	12 MHz	-	$\begin{gathered} 2.5 \times 3.2(\mathrm{~mm}) \\ \text { SMT } \end{gathered}$	Abracon Corp	ABM8G-12.000MHZ-4Y-T3	Yes	Yes

onsemi, Onsemil, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is not available for sale to consumers. The board is only intended for research, development, demonstration and evaluation purposes and will only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

THE BOARD IS PROVIDED BY ONSEMI TO YOU "AS IS" AND WITHOUT ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER. WITHOUT LIMITING THE FOREGOING, ONSEMI (AND ITS LICENSORS/SUPPLIERS) HEREBY DISCLAIMS ANY AND ALL REPRESENTATIONS AND WARRANTIES IN RELATION TO THE BOARD, ANY MODIFICATIONS, OR THIS AGREEMENT, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY AND ALL REPRESENTATIONS AND WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, AND THOSE ARISING FROM A COURSE OF DEALING, TRADE USAGE, TRADE CUSTOM OR TRADE PRACTICE.
onsemi reserves the right to make changes without further notice to any board.
You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by onsemi shall not constitute any representation or warranty by onsemi, and no additional obligations or liabilities shall arise from onsemi having provided such information or services.
onsemi products including the boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. You agree to indemnify, defend and hold harmless onsemi, its directors, officers, employees, representatives, agents, subsidiaries, affiliates, distributors, and assigns, against any and all liabilities, losses, costs, damages, judgments, and expenses, arising out of any claim, demand, investigation, lawsuit, regulatory action or cause of action arising out of or associated with any unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of any products and/or the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING - This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by onsemi to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.
onsemi does not convey any license under its patent rights nor the rights of others.
LIMITATIONS OF LIABILITY: onsemi shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if onsemi is advised of the possibility of such damages. In no event shall onsemi's aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.

The board is provided to you subject to the license and other terms per onsemi's standard terms and conditions of sale. For more information and documentation, please visit www.onsemi.com.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock \& Timer Development Tools category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
AD9517-0A/PCBZ AD9517-2A/PCBZ AD9520-5PCBZ AD9530/PCBZ AD9553/PCBZ ADCLK914PCBZ LMH2180SDEVAL DSC400-0333Q0032KE1-EVB TDGL013 MAX2880EVKIT\# MAX2750EVKIT MAX2752EVKIT ADCLK946PCBZ MAX2622EVKIT EKIT01HMC1032LP6G Si5332-8IX-EVB RV-2251-C3-EVALUATION-BOARD Si5332-12IX-EVB RV-3029-C2-EVALUATION-BOARD-OPTION-B Si5332-6IX-EVB SKY72310-11-EVB EV1HMC6475LC4B EV1HMC8364LP6G EV1HMC8362LP6G RV-8263-C7-EVALUATION-BOARD EVK9FGV1002 EVK9FGV1008 EV1HMC6832ALP5L EVAL01-HMC830LP6GE EVAL01-HMC911LC4B EVAL01-HMC987LP5E EVAL01-HMC988LP3E LMX2487E-EVM MIKROE-2481 2045 ADCLK846/PCBZ EKIT01-HMC835LP6G EKIT01-HMC834LP6GE EKIT01-HMC830LP6GE TS3006DB 105811-HMC440QS16G DSC-TIMEFLASH2-KIT1 110227-HMC510LP5 110227-HMC513LP5 AD9515/PCBZ ADCLK948/PCBZ ADCLK954/PCBZ 112261-HMC739LP4 AD9513/PCBZ ADCLK925/PCBZ

