### 2.5 V/3.3 V/5.0 V Differential Data/Clock D Flip-Flop with Reset

## Multi-Level Inputs to LVPECL Translator w/ Internal Termination

The NB4L52 is a differential Data and Clock D flip-flop with a differential asynchronous Reset. The differential inputs incorporate internal $50 \Omega$ termination resistors and will accept PECL, LVPECL, LVCMOS, LVTTL, CML, or LVDS logic levels. When Clock transitions from Low to High, Data will be transferred to the differential LVPECL outputs. The differential Clock inputs allow the NB4L52 to also be used as a negative edge triggered device. The device is housed in a small $3 \times 3 \mathrm{~mm} 16$ pin QFN package.

## Features

- Maximum Input Clock Frequency $>4 \mathrm{GHz}$ Typical
- 330 ps Typical Propagation Delay
- 145 ps Typical Rise and Fall Times
- Differential LVPECL Outputs, 750 mV Peak-to-Peak, Typical
- Operating Range: $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 5.5 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
- Internal Input Termination Resistors, $50 \Omega$
- Functionally Compatible with Existing 2.5 V/3.3 V/5.0 V LVEL, LVEP, EP, and SG Devices
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Ambient Operating Temperature
- These are $\mathrm{Pb}-$ Free Devices

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

MARKING DIAGRAM*


QFN-16 MN SUFFIX CASE 485G

A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*For additional marking information, refer to Application Note AND8002/D.


Figure 1. Logic Diagram
Table 1. TRUTH TABLE

| R | D | CLK | Q |
| :---: | :---: | :---: | :---: |
| $H$ | X | x | L |
| L | L | Z | L |
| L | H | Z | $H$ |

[^0]ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.


Figure 2. Pinout (Top View)

Table 2. PIN DESCRIPTION

| Pin | Name | I/O | Description |
| :---: | :---: | :---: | :---: |
| 1 | $V_{\text {TD }}$ | - | Internal $50 \Omega$ Termination Pin. (See Table 4) |
| 2 | D | ECL, CML, LVCMOS, LVDS, LVTTL Input | Noninverted Differential Input. (Note 1) |
| 3 | $\overline{\text { D }}$ | ECL, CML, LVCMOS, LVDS, LVTTL Input | Inverted Differential Input. (Note 1) |
| 4 | $\nabla_{\text {TD }}$ | - | Internal $50 \Omega$ Termination Pin. (See Table 4) |
| 5 | $\mathrm{V}_{\text {TCLK }}$ | - | Internal $50 \Omega$ Termination Pin. (See Table 4) |
| 6 | CLK | ECL, CML, LVCMOS, LVDS, LVTTL Input | Noninverted Differential Input. (Note 1) |
| 7 | CLK | ECL, CML, LVCMOS, LVDS, LVTTL Input | Inverted Differential Input. (Note 1) |
| 8 | $\nabla_{\text {TCLK }}$ | - | Internal $50 \Omega$ Termination Pin. (See Table 4) |
| 9 | $\mathrm{V}_{\mathrm{EE}}$ | - | Negative Supply Voltage |
| 10 | Q | ECL Output | Inverted Differential Output. Typically terminated with $50 \Omega$ resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$. |
| 11 | Q | ECL Output | Noninverted Differential Output. Typically terminated with $50 \Omega$ resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$. |
| 12 | $\mathrm{V}_{\mathrm{CC}}$ | - | Positive Supply Voltage |
| 13 | $\mathrm{V}_{\text {TR }}$ | - | Internal $50 \Omega$ Termination Pin. (See Table 4) |
| 14 | R | LVECL, LVCMOS, LVTTL Input | Noninverted Differential Reset Input. (Note 1) |
| 15 | $\overline{\mathrm{R}}$ | LVECL, LVCMOS, LVTTL Input | Inverted Differential Reset Input. (Note 1) |
| 16 | $\nabla_{\text {TR }}$ | - | Internal $50 \Omega$ Termination Pin. (See Table 4) |
| - | EP | - | The Exposed Pad (EP) on the QFN-16 package bottom is thermally connected to the die for improved heat transfer out of package. The pad is not electrically connected to the die, but is recommended to be electrically and thermally connected to $\mathrm{V}_{\mathrm{EE}}$ on the PC board. |

1. In the differential configuration when the input termination pin (VTD, VTD, VTR, VTR, VTCLK, VTCLK) are connected to a common termination voltage or left open, and if no signal is applied on $D / D, C L K / C L K, R / R$ input then the device will be susceptible to self-oscillation.

Table 3. ATTRIBUTES

| Characteristic | Value |  |
| :---: | :---: | :---: |
| ESD ProtectionHuman Body Model <br> Machine Model <br> Charged Device Model | $\begin{gathered} >2 \mathrm{kV} \\ >200 \mathrm{~V} \\ >1 \mathrm{kV} \end{gathered}$ |  |
| Moisture Sensitivity (Note 2) | Pb Pkg | Pb-Free Pkg |
| QFN-16 | Level 1 | Level 1 |
| Flammability Rating Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in |  |
| Transistor Count | 164 |  |
| Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test |  |  |

2. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

| Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {cc }}$ | Positive Power Supply | $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$ |  | 6.0 | V |
| $\mathrm{V}_{\text {EE }}$ | Negative Power Supply | $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ |  | -6.0 | V |
| $\mathrm{V}_{10}$ | Positive Input/Output Negative Input/Output | $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{I}} \geq \mathrm{V}_{\mathrm{EE}} \end{aligned}$ | $\begin{gathered} \hline 6.0 \\ -6.0 \end{gathered}$ | $\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{I}_{\mathrm{IN}}$ | Input Current Through $\mathrm{R}_{\mathrm{T}}(50 \Omega$ Resistor) | Static Surge |  | $\begin{aligned} & 45 \\ & 80 \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| ${ }^{\text {out }}$ | Output Current | Continuous Surge |  | $\begin{aligned} & 25 \\ & 50 \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| TA | Operating Temperature Range |  |  | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {stg }}$ | Storage Temperature Range |  |  | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\theta_{\mathrm{JA}}$ | Thermal Resistance (Junction-to-Ambient) | $\begin{aligned} & \hline 0 \text { LFPM } \\ & 500 \text { LFPM } \end{aligned}$ | $\begin{aligned} & 16 \text { QFN } \\ & 16 \text { QFN } \end{aligned}$ | $\begin{aligned} & 42 \\ & 35 \end{aligned}$ | $\begin{aligned} & \hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$ |
| $\theta_{\text {Jc }}$ | Thermal Resistance (Junction-to-Case) | 2S2P (Note 3) | 16 QFN | 4.0 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{T}_{\text {sol }}$ | Wave Solder Pb-Free |  |  | 265 | ${ }^{\circ} \mathrm{C}$ |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
3. JEDEC standard multilayer board - 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 5. DC CHARACTERISTICS, CLOCK INPUTS, LVPECL OUTPUTS
$\left(\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.375$ to $-5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ )

| Symbol | Characteristic | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current (Inputs and Outputs Open) |  | 16 | 25 | mA |
| $\mathrm{~V}_{\mathrm{OH}}$ | Output HIGH Voltage (Note 4, 5) | $\mathrm{V}_{\mathrm{CC}}-1145$ | $\mathrm{~V}_{\mathrm{CC}}-1020$ | $\mathrm{~V}_{\mathrm{CC}}-895$ | mV |
|  | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ | 3855 | 3980 | 4105 |  |
|  | $\mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ | 2155 | 2280 | 2405 |  |
|  | $\mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ | 1355 | 1480 | 1605 |  |
|  | $\mathrm{~V}_{\mathrm{OL}}$ | Output LOW Voltage (Note 4, 5) | $\mathrm{V}_{\mathrm{CC}}-1945$ | $\mathrm{~V}_{\mathrm{CC}}-1770$ | $\mathrm{~V}_{\mathrm{CC}}-1600$ |
|  | $\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ | 3055 | 3230 | 3400 |  |
|  | $\mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ | 1355 | 1530 | 1700 |  |
|  | $\mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ | 555 | 730 | 900 |  |

DIFFERENTIAL INPUT DRIVEN SINGLE-ENDED (Figures 4 \& 7)

| Vth | Input Threshold Reference Voltage Range (Note 6) | 1050 |  | $\mathrm{~V}_{\mathrm{CC}}-150$ | mV |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IH}}$ | Single-ended Input HIGH Voltage | $\mathrm{Vth}+150$ |  | $\mathrm{~V}_{\mathrm{CC}}$ | mV |
| $\mathrm{V}_{\mathrm{IL}}$ | Single-ended Input LOW Voltage | $\mathrm{V}_{\text {EE }}$ |  | $\mathrm{Vth}-150$ | mV |

DIFFERENTIAL INPUT DRIVEN DIFFERENTIALLY (Figures 5, 6 \& 8)

| $\mathrm{V}_{\text {IHD }}$ | Differential Input HIGH Voltage | 1200 |  | $\mathrm{V}_{\mathrm{CC}}$ | mV |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {ILD }}$ | Differential Input LOW Voltage | $\mathrm{V}_{\mathrm{EE}}$ |  | $\mathrm{V}_{C C}-150$ | mV |
| $\mathrm{V}_{\text {CMR }}$ | Input Common Mode Range (Differential Configuration) (Note 7) | 1125 |  | $\mathrm{V}_{\mathrm{CC}}-75$ | mV |
| $\mathrm{V}_{\text {ID }}$ | Differential Input Voltage ( $\mathrm{V}_{\text {IHD }}$ - $\mathrm{V}_{\text {ILD }}$ ) | 150 |  | $\mathrm{V}_{\mathrm{Cc}}$ | mV |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current D/ $\overline{\mathrm{D}}$, CLK / CLK, R/R $\quad(\mathrm{VTx} / \mathrm{VTx}$ Open) | -150 |  | 150 | $\mu \mathrm{A}$ |
| IIL | Input LOW Current D/ $\overline{\mathrm{D}, ~ C L K / \overline{C L K}, \mathrm{R} / \overline{\mathrm{R}} \quad \text { (VTx/VTx Open) }}$ | -150 |  | 150 | $\mu \mathrm{A}$ |
| $\mathrm{R}_{\text {TIN }}$ | Internal Input Termination Resistor | 40 | 50 | 60 | $\Omega$ |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
4. LVPECL outputs loaded with $50 \Omega$ to $\mathrm{V}_{\mathrm{Cc}}-2.0 \mathrm{~V}$ for proper operation.
5. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$.
6. $\mathrm{V}_{\mathrm{th}}$ is applied to the complementary input when operating in single-ended mode.
7. $\mathrm{V}_{\text {CMRMIN }}$ varies $1: 1$ with $\mathrm{V}_{\text {EE }}, \mathrm{V}_{\text {CMRMAX }}$ varies $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$. The $\mathrm{V}_{\mathrm{CMR}}$ range is referenced to the most positive side of the differential input signal.

Table 6. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 5.5 V ; $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.375$ to -5.5 V (Note 8)

| Symbol | Characteristic | $-40^{\circ} \mathrm{C}$ |  |  | $25^{\circ} \mathrm{C}$ |  |  | $85^{\circ} \mathrm{C}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max | Min | Typ | Max |  |
| $\mathrm{V}_{\text {OUTPP }}$ | Output Voltage Amplitude (@ $\left.\mathrm{V}_{\text {INPPmin }}\right)$ <br> (Note 10) <br>  <br>  <br> $f_{\text {in }}$$\leq 2.0 \mathrm{GHz}$ | $\begin{aligned} & 530 \\ & 490 \\ & 380 \end{aligned}$ | $\begin{aligned} & 770 \\ & 720 \\ & 580 \end{aligned}$ |  | $\begin{aligned} & 530 \\ & 490 \\ & 380 \end{aligned}$ | $\begin{aligned} & 780 \\ & 730 \\ & 580 \end{aligned}$ |  | $\begin{aligned} & 530 \\ & 490 \\ & 380 \end{aligned}$ | $\begin{aligned} & 760 \\ & 680 \\ & 530 \end{aligned}$ |  | mV |
| $\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}}, \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$ | Propagation Delay to <br> Output Differential$\quad$ CLK to Q, R to Q | 300 | 400 | 500 | 300 | 400 | 500 | 300 | 400 | 500 | ps |
| $\mathrm{t}_{\text {s }}$ | Setup Time | 100 |  |  | 100 |  |  | 100 |  |  | ps |
| $t_{\text {h }}$ | Hold Time | 50 |  |  | 50 |  |  | 50 |  |  | ps |
| $\mathrm{t}_{\mathrm{RR}}$ | Reset Recovery | 400 |  |  | 400 |  |  | 400 |  |  | ps |
| $t_{\text {PW }}$ | Minimum Pulse Width $\quad$ R/R | 250 |  |  | 250 |  |  | 250 |  |  | ps |
| $\mathrm{t}_{\text {JITTER }}$ | $\begin{array}{\|ll} \hline \text { RMS Random Clock Jitter (Note 9) } & \\ & f_{\text {in }} \leq 2.0 \mathrm{GHz} \\ & f_{\text {in }} \leq 3.0 \mathrm{GHz} \\ & f_{\text {in }} \leq 4.0 \mathrm{GHz} \end{array}$ |  | 1 1 1 |  |  | 1 1 1 |  |  | 1 1 1 |  | ps |
| VINPP | Input Voltage Swing/Sensitivity (Differential Configuration) (Note 10) | 150 |  | 2800 | 150 |  | 2800 | 150 |  | 2800 | mV |
| tr $\mathrm{t}_{\text {f }}$ | $\begin{aligned} & \text { Output Rise/Fall Times @ } 0.5 \mathrm{GHz} \\ & (20 \%-80 \%) \end{aligned}$ | 80 | 135 | 190 | 80 | 145 | 190 | 80 | 155 | 190 | ps |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
8. Measured by forcing $\mathrm{V}_{\text {INPP }}(\mathrm{MIN})$ from a $50 \%$ duty cycle clock source. All loading with an external $R_{L}=50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$. Input edge rates 40 ps (20\% - 80\%).
9. Additive RMS jitter with $50 \%$ duty cycle clock signal.
10. Input and output voltage swing is a single-ended measurement operating in differential mode.


Figure 3. Output Voltage Amplitude ( $\mathrm{V}_{\text {OUTPP }}$ ) vs. Clock Input Frequency at Ambient Temperature (Typical).


Figure 4. Differential Input Driven Single-Ended


Figure 5. Differential Inputs Driven Differentially


Figure 6. Differential Inputs Driven Differentially


Figure 7. $\mathrm{V}_{\text {th }}$ Diagram
Figure 8. $\mathbf{V}_{\text {CMR }}$ Diagram


Figure 9. AC Reference Measurement


Figure 10. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)

ORDERING INFORMATION

| Device | Package | Shipping $^{\dagger}$ |
| :--- | :---: | :---: |
| NB4L52MNG | QFN-16, 3 $\times 3 \mathrm{~mm}$ <br> $($ Pb-Free $)$ | 123 Units / Rail |
| NB4L52MNR2G | QFN-16, 3 $\times 3 \mathrm{~mm}$ <br> (Pb-Free) | $3000 /$ Tape \& Reel |

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
Resource Reference of Application Notes
AN1405/D - ECL Clock Distribution Techniques
AN1406/D - Designing with PECL (ECL at +5.0 V)
AN1503/D - ECLinPS I/O SPiCE Modeling Kit
AN1504/D - Metastability and the ECLinPS Family
AN1568/D - Interfacing Between LVDS and ECL
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design
AND8002/D - Marking and Date Codes
AND8020/D - Termination of ECL Logic Devices
AND8066/D - Interfacing with ECLinPS
AND8090/D - AC Characteristics of ECL Devices


QFN16 3x3, 0.5P
CASE 485G
ISSUE G
SCALE 2:1


SIDE VIEW

battam View

NDTES:

1. DIMENSIONING AND TQLERANCING PER ASME Y14.5M, 1994.
2. CDNTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIDN 6 APPLIES TD PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FRDM THE TERMINAL TIP.
4. CIPLANARITY APPLIES TD THE EXPISED PAD AS WELL AS. THE TERMINALS.


DETAIL B
ALTERNATE
CINSTRUCTIONS


DETAIL A
ALTERNATE TERMINAL CONSTRUCTIINS

| DIM | MILLIMETERS |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: |
|  | MIN. | NDM. | MAX. |  |  |
| A | 0.80 | 0.90 | 1.00 |  |  |
| A1 | 0.00 | 0.03 | 0.05 |  |  |
| A3 | 0.20 REF |  |  |  |  |
| b | 0.18 | 0.24 |  |  |  |
| D | 3.00 BSC |  |  |  |  |
| D2 | 1.65 | 1.75 |  |  | 1.85 |
| E | 3.00 BSC |  |  |  |  |
| E2 | 1.65 | 1.75 | 1.85 |  |  |
| e | 0.50 BSC |  |  |  |  |
| K | 0.18 TYP |  |  |  |  |
| L | 0.30 | 0.40 | 0.50 |  |  |
| L1 | 0.00 | 0.08 | 0.15 |  |  |

GENERIC MARKING DIAGRAM*
${ }^{\circ} \mathrm{XXXXX}$
XXXXX
ALYW.
-
XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\cdot$ ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON04795D | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| :---: | :---: | :---: |
| DESCRIPTION: | QFN16 3X3, 0.5P | PAGE 10 |

[^1]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG FXL4TD245UMX NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG
MC100EPT622MNG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG
NB3U23CMNTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7
NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR
MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSX3018MUTAG NLSV2T244MUTAG NLSX3013FCT1G
NLSX5011AMX1TCG PCA9306USG SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G
LTC1045CSW\#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE ADG3245BRUZ-REEL7
ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ


[^0]:    Z = LOW to HIGH Transition
    x = Don't Care

[^1]:    onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

