3．3 V，2．5 Gb／s Multi Level Clock／Data Input to CML Receiver／Buffer／Translator

NB4N11M

Description

The NB4N11M is a differential 1－to－2 clock／data distribution／translation chip with CML output structure，targeted for high－speed clock／data applications．The device is functionally equivalent to the EP11，LVEP11，SG11 or 7L11M devices．Device produces two identical differential output copies of clock or data signal operating up to 2.5 GHz or $2.5 \mathrm{~Gb} / \mathrm{s}$ ，respectively．As such， NB4N11M is ideal for SONET，GigE，Fiber Channel，Backplane and other clock／data distribution applications．

Inputs accept LVPECL，CML，LVCMOS，LVTTL，or LVDS （See Table 5）．The CML outputs are 16 mA open collector （See Figure 18）which requires resistor $\left(\mathrm{R}_{\mathrm{L}}\right)$ load path to V_{TT} termination voltage．The open collector CML outputs must be terminated to V_{TT} at power up．Differential outputs produces current－mode logic（CML）compatible levels when receiver loaded with 50Ω or 25Ω loads connected to $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V supplies （see Figure 19）．This simplifies device interface by eliminating a need for coupling capacitors．

The device is offered in a small 8－pin TSSOP package．
Application notes，models，and support documentation are available at www．onsemi．com．

Features

－Maximum Input Clock Frequency $>2.5 \mathrm{GHz}$
－Maximum Input Data Rate $>2.5 \mathrm{~Gb} / \mathrm{s}$
－Typically 1 ps of RMS Clock Jitter
－Typically 10 ps of Data Dependent Jitter＠ $2.5 \mathrm{~Gb} / \mathrm{s}, \mathrm{R}_{\mathrm{L}}=25 \Omega$
－ 420 ps Typical Propagation Delay
－ 150 ps Typical Rise and Fall Times
－Operating Range： $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{TT}}=1.8 \mathrm{~V}$ to 3.6 V
－Functionally Compatible with Existing 2．5 V／3．3 V LVEL，LVEP， EP，and SG Devices
－These Devices are $\mathrm{Pb}-$ Free，Halogen Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
www．onsemi．com

MARKING DIAGRAM＊

8月月日月
E11M
ALYW－
0 －
${ }^{1}$ 벼엽

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
－	$=$ Pb－Free Package

（Note：Microdot may be in either location）
＊For additional marking information，refer to Application Note AND8002／D．

Figure 1．Functional Block Diagram

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet．

NB4N11M

Figure 2. Pinout (Top View) and Logic Diagram

Table 1. Pin Description

Pin	Name	1/0	Description
1	Q0	CML Output	Noninverted differential output. Typically receiver terminated with 50Ω resistor to V_{TT}. Open collector CML outputs must be terminated to V_{TT} at powerup.
2	Q0	CML Output	Inverted differential output. Typically receiver terminated with 50Ω resistor to V_{TT}. Open collector CML outputs must be terminated to V_{TT} at powerup.
3	Q1	CML Output	Noninverted differential output. Typically receiver terminated with 50Ω resistor to V_{TT}. Open collector CML outputs must be terminated to V_{TT} at powerup.
4	Q1	CML Output	Inverted differential output. Typically receiver terminated with 50Ω resistor to V_{TT}. Open collector CML outputs must be terminated to V_{TT} at powerup.
5	V_{EE}	-	Negative supply voltage.
6	$\overline{\text { D }}$	LVPECL, CML, HSTL, LVCMOS, LVDS, LVTTL Input	Inverted differential input.
7	D	LVPECL, CML, HSTL, LVCMOS, LVDS, LVTTL Input	Noninverted differential input.
8	V_{CC}	-	Positive supply voltage.

NB4N11M

Table 2. ATTRIBUTES

Characteristics	Value
ESD Protection Human Body Model Machine Model	$>1000 \mathrm{~V}$
Moisture Sensitivity (Note 1) $8-$ TSSOP	$>70 \mathrm{~V}$

1. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{CC}	Positive Power Supply	$\mathrm{V}_{\mathrm{EE}}=-0.5 \mathrm{~V}$		4	V
V_{EE}	Negative Power Supply	$\mathrm{V}_{\mathrm{CC}}=+0.5 \mathrm{~V}$		-4	V
V_{1}	Positive Input Negative Input	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{1}=V_{C C}+0.4 \mathrm{~V} \\ & V_{I}=V_{E E}-0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 4 \\ -4 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{0}	Output Voltage $\begin{gathered}\text { Minimum } \\ \text { Maximum }\end{gathered}$			$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}+600 \\ & \mathrm{~V}_{\mathrm{CC}}+400 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
T_{A}	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient) (Note 2)	$\begin{aligned} & \hline 0 \mathrm{lfpm} \\ & 500 \mathrm{lfpm} \end{aligned}$	$\begin{aligned} & \text { TSSOP-8 } \\ & \text { TSSOP-8 } \end{aligned}$	$\begin{aligned} & \hline 190 \\ & 130 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	1S2P (Note 2)	TSSOP-8	41 to 44	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder	< 3 Sec @ $260^{\circ} \mathrm{C}$		265	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
2. JEDEC standard multilayer board - 1S2P (1 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 4. DC CHARACTERISTICS, CLOCK Inputs, CML Outputs $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit
$I_{\text {CC }}$	Power Supply Current (Inputs and Outputs Open)		25	35	mA

$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{TT}}=3.6 \mathrm{~V}$ to 2.5 V

V_{OH}	Output HIGH Voltage (Note 3)	$\mathrm{V}_{\mathrm{TT}}-60$	$\mathrm{~V}_{\mathrm{TT}}-10$	$\mathrm{~V}_{\mathrm{TT}}$	mV
V_{OL}	Output LOW Voltage (Note 3)	$\mathrm{V}_{\mathrm{TT}}-1100$	$\mathrm{~V}_{\mathrm{TT}}-800$	$\mathrm{~V}_{\mathrm{TT}}-640$	mV
$\left\|\mathrm{V}_{\mathrm{OD}}\right\|$	Differential Output Voltage Magnitude	640	780	1000	mV

$R_{\mathrm{L}}=\mathbf{2 5 \Omega} \Omega \mathrm{V}_{\mathrm{TT}}=3.6 \mathrm{~V}$ to $2.5 \mathrm{~V} \pm 5 \%$

V_{OH}	Output HIGH Voltage (Note 3)	$\mathrm{V}_{\mathrm{TT}}-60$	$\mathrm{~V}_{\mathrm{TT}}-10$	$\mathrm{~V}_{\mathrm{TT}}$	mV
V_{OL}	Output LOW Voltage (Note 3)	$\mathrm{V}_{\mathrm{TT}}-550$	$\mathrm{~V}_{\mathrm{TT}}-400$	$\mathrm{~V}_{\mathrm{TT}}-320$	mV
$\left\|\mathrm{V}_{\mathrm{OD}}\right\|$	Differential Output Voltage Magnitude	320	390	500	mV

$R_{L}=50 \Omega, V_{T T}=1.8 \mathrm{~V} \pm 5 \%$

V_{OH}	Output HIGH Voltage (Note 3)	$\mathrm{V}_{\mathrm{TT}}-170$	$\mathrm{~V}_{\mathrm{TT}}-10$	$\mathrm{~V}_{\mathrm{TT}}$	mV
V_{OL}	Output LOW Voltage (Note 3)	$\mathrm{V}_{\mathrm{TT}}-1100$	$\mathrm{~V}_{\mathrm{TT}}-800$	$\mathrm{~V}_{\mathrm{TT}}-640$	mV
$\left\|\mathrm{V}_{\mathrm{OD}}\right\|$	Differential Output Voltage Magnitude	570	780	1000	mV

$$
R_{L}=25 \Omega, V_{T T}=1.8 \mathrm{~V} \pm 5 \%
$$

V_{OH}	Output HIGH Voltage (Note 3)	$\mathrm{V}_{\mathrm{TT}}-85$	$\mathrm{~V}_{\mathrm{TT}}-10$	$\mathrm{~V}_{\mathrm{TT}}$	mV
V_{OL}	Output LOW Voltage (Note 3)	$\mathrm{V}_{\mathrm{TT}}-500$	$\mathrm{~V}_{\mathrm{TT}}-400$	$\mathrm{~V}_{\mathrm{TT}}-320$	mV
$\left\|\mathrm{V}_{\mathrm{OD}}\right\|$	Differential Output Voltage Magnitude	285	390	500	mV

DIFFERENTIAL INPUT DRIVEN SINGLE-ENDED (Figures 14 and 16)

$\mathrm{V}_{\text {th }}$	Input Threshold Reference Voltage Range (Note 5)	V_{EE}		V_{CC}	mV
V_{IH}	Single-ended Input HIGH Voltage	$\mathrm{V}_{\mathrm{th}}+100$		$\mathrm{~V}_{\mathrm{CC}}+400$	mV
V_{IL}	Single-ended Input LOW Voltage	$\mathrm{V}_{\mathrm{EE}}-400$		$\mathrm{~V}_{\mathrm{th}}-100$	mV

DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 15 and 17)

$\mathrm{V}_{\text {IHD }}$	Differential Input HIGH Voltage	V_{EE}		$\mathrm{V}_{\mathrm{CC}}+400$	mV
$\mathrm{V}_{\text {ILD }}$	Differential Input LOW Voltage	$\mathrm{V}_{\mathrm{EE}}-400$		$\mathrm{~V}_{\mathrm{CC}}-100$	mV
$\mathrm{V}_{\mathrm{CMR}}$	Input Common Mode Range (Differential Configuration)	V_{EE}		V_{CC}	mV
$\left\|\mathrm{V}_{\text {ID }}\right\|$	Differential Input Voltage Magnitude ($\left.\left\|\mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}\right\|\right)$ (Note 7)	100		$\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	mV
C_{IN}	Input Capacitance (Note 7)		1.5		pF

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
3. CML outputs require R_{L} receiver termination resistors to $V_{T T}$ for proper operation. Outputs must be connected through R_{L} to $V_{T T}$ at power up. The output parameters vary $1: 1$ with V_{TT}.
4. Input parameters vary $1: 1$ with $V_{C c}$.
5. $\mathrm{V}_{\text {th }}$ is applied to the complementary input when operating in single-ended mode.
6. $\mathrm{V}_{\mathrm{CMR}}(\mathrm{MIN})$ varies $1: 1$ with $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{CMR}}$ max varies $1: 1$ with V_{CC}.
7. Parameter guaranteed by design and evaluation but not tested in production.

Table 5. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$; (Note 8)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OUTPP }}$	Output Voltage Amplitude $\left(\mathrm{R}_{\mathrm{L}}=50 \Omega\right)$ $\mathrm{f}_{\mathrm{in}} \leq 1 \mathrm{GHz}$ (See Figure 12) $\mathrm{f}_{\mathrm{in}} \leq 1.5 \mathrm{GHz}$ $\mathrm{f}_{\text {in }} \leq 2.5 \mathrm{GHz}$	$\begin{aligned} & 550 \\ & 400 \\ & 150 \end{aligned}$	$\begin{aligned} & 660 \\ & 640 \\ & 400 \end{aligned}$		$\begin{aligned} & 550 \\ & 400 \\ & 150 \end{aligned}$	$\begin{aligned} & 660 \\ & 640 \\ & 400 \end{aligned}$		$\begin{aligned} & 550 \\ & 400 \\ & 150 \end{aligned}$	$\begin{aligned} & 660 \\ & 640 \\ & 400 \end{aligned}$		mV
$\mathrm{V}_{\text {OUTPP }}$	Output Voltage Amplitude $\left(\mathrm{R}_{\mathrm{L}}=25 \Omega\right)$ $\mathrm{f}_{\mathrm{in}} \leq 1 \mathrm{GHz}$ (See Figure 12) $\mathrm{f}_{\mathrm{in}} \leq 1.5 \mathrm{GHz}$ $\mathrm{f}_{\text {in }} \leq 2.5 \mathrm{GHz}$	$\begin{aligned} & 280 \\ & 280 \\ & 100 \end{aligned}$	$\begin{aligned} & 370 \\ & 360 \\ & 300 \end{aligned}$		$\begin{aligned} & 280 \\ & 280 \\ & 100 \end{aligned}$	$\begin{aligned} & 370 \\ & 360 \\ & 400 \end{aligned}$		$\begin{aligned} & 280 \\ & 280 \\ & 100 \end{aligned}$	$\begin{aligned} & 370 \\ & 360 \\ & 400 \end{aligned}$		mV
$\mathrm{f}_{\text {DATA }}$	Maximum Operating Data Rate	1.5	2.5		1.5	2.5		1.5	2.5		Gb / s
$\begin{aligned} & \hline t_{\text {PLH }}, \\ & t_{\text {PHLL }} \end{aligned}$	Propagation Delay to Output Differential @ 0.5 GHz	300	420	600	300	420	600	300	420	600	ps
tskew	Duty Cycle Skew (Note 9) Within Device Skew Device to Device Skew (Note 13)		$\begin{gathered} 2 \\ 5 \\ 20 \end{gathered}$	$\begin{gathered} \hline 20 \\ 25 \\ 100 \end{gathered}$		$\begin{gathered} 2 \\ 5 \\ 20 \end{gathered}$	$\begin{gathered} \hline 20 \\ 25 \\ 100 \end{gathered}$		$\begin{gathered} 2 \\ 5 \\ 20 \end{gathered}$	$\begin{gathered} \hline 20 \\ 25 \\ 100 \end{gathered}$	ps
$\mathrm{t}_{\text {JITTER }}$	RMS Random Clock Jitter $\mathrm{R}_{\mathrm{L}}=50 \Omega$ and $\mathrm{R}_{\mathrm{L}}=25 \Omega$ (Note 11) $\mathrm{f}_{\text {in }}=750 \mathrm{MHz}$ $\mathrm{f}_{\text {in }}=1.5 \mathrm{GHz}$ $\mathrm{f}_{\text {in }}=2.5 \mathrm{GHzz}$ Peak-to-Peak Data Dependent Jitter $\mathrm{R}_{\mathrm{L}}=50 \Omega$ $\mathrm{f}_{\text {DATA }}=1.5 \mathrm{~Gb} / \mathrm{s}$ (Note 12) $\mathrm{f}_{\text {DATA }}=2.5 \mathrm{~Gb} / \mathrm{s}$ Peak-to-Peak Data Dependent itter $\mathrm{R}_{\mathrm{L}}=25 \Omega$ $\mathrm{f}_{\text {DATA }}=1.5 \mathrm{~Gb} / \mathrm{s}$ (Note 12) $\mathrm{f}_{\text {DATA }}=2.5 \mathrm{~Gb} / \mathrm{s}$		$\begin{gathered} 1 \\ 1 \\ 1 \\ \\ 15 \\ 20 \\ \\ 5 \\ 10 \end{gathered}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & \\ & 55 \\ & 85 \\ & \\ & 35 \\ & 35 \end{aligned}$		$\begin{gathered} 1 \\ 1 \\ 1 \\ 15 \\ 20 \\ \\ 5 \\ 10 \end{gathered}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & \\ & 55 \\ & 85 \\ & \\ & 35 \\ & 35 \end{aligned}$		$\begin{gathered} 1 \\ 1 \\ 1 \\ 15 \\ 20 \\ \\ 5 \\ 10 \end{gathered}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & \\ & 55 \\ & 85 \\ & \\ & 35 \\ & 35 \end{aligned}$	ps
$\mathrm{V}_{\text {INPP }}$	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 10)	100			100			100			mV
$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	$\begin{array}{\|ll} \hline \text { Output Rise/Fall Times @ } 0.5 \mathrm{GHz} \\ (20 \%-80 \%) \end{array}$		150	300		150	300		150	300	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.
8. Measured by forcing $\mathrm{V}_{\text {INPP }}(\mathrm{MIN})$ from a 50% duty cycle clock source. All output loaded with an external $R_{L}=50 \Omega$ and $R_{L}=25 \Omega$ to $V_{T T}$. Outputs must be connected through R_{L} to $\mathrm{V}_{T T}$ at power up. Input edge rates $150 \mathrm{ps}(20 \%-80 \%)$.
9. Duty cycle skew is measured between differential outputs using the deviations of the sum of T_{pw} - and $\mathrm{T}_{\mathrm{pw}+} @ 0.5 \mathrm{GHz}$.
10. $\mathrm{V}_{\text {INPP }}(\mathrm{MAX})$ cannot exceed $\mathrm{V}_{C C}-\mathrm{V}_{\text {EE }}$. Input voltage swing is a single-ended measurement operating in differential mode.
11. Additive RMS jitter with 50% duty cycle clock signal.
12. Additive peak-to-peak data dependent jitter with input NRZ data signal (PRBS $2^{23}-1$).
13. Device to device skew is measured between outputs under identical transition @ 0.5 GHz .

Figure 3. Output Voltage Amplitude (VOUTPP) versus Input Clock Frequency (f_{I}) at Ambient Temperature (Typical)

NB4N11M

NB4N11M

Figure 4. Data Dependent Jitter vs. Frequency and Temperature $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V}\right.$; $\mathrm{V}_{\mathrm{TT}}=3.3 \mathrm{~V}$ @ $25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV}$; PRBS $\mathbf{2}^{23}-1 ; \mathrm{R}_{\mathrm{L}}=50 \Omega$)

TEMPERATURE (${ }^{\circ} \mathrm{C}$)
Figure 6. Typical Propagation Delay vs. Temperature ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V}$; $\mathrm{V}_{\mathrm{TT}}=3.3 \mathrm{~V}$ @ $25^{\circ} \mathrm{C} ; \mathrm{V}_{\text {in }}=100 \mathrm{mV} ; \mathrm{R}_{\mathrm{L}}=50 \Omega$)

Figure 5. Data Dependent Jitter vs. Frequency and Temperature $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V}\right.$; $\mathrm{V}_{\mathrm{TT}}=3.3 \mathrm{~V}$ @ $25^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV}$; PRBS $\mathbf{2}^{\mathbf{2 3}-1 ; ~} \mathrm{R}_{\mathrm{L}}=25 \Omega$)

INPUT OFFSET VOLTAGE (V)
Figure 7. Typical Propagation Delay vs. Input Offset Voltage (VCC $-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{TT}}=3.3 \mathrm{~V}$ @ $25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{in}}=100 \mathrm{mV} \mathrm{R}_{\mathrm{L}}=\mathbf{5 0 \Omega}$)

Figure 8. Supply Current vs. Temperature

Figure 9. Typical Differential Output Waveform at $750 \mathrm{Mb} / \mathrm{s}$
($R_{L}=50 \Omega$ Left Plot, $R_{L}=25 \Omega$ Right Plot, $V_{\text {in }}=100 \mathrm{mV}$, System DDJ = $\mathbf{2 4} \mathrm{ps}$)

Figure 10. Typical Differential Output Waveform $1.5 \mathrm{~Gb} / \mathrm{s}$
($R_{L}=50 \Omega$ Left Plot, $R_{L}=25 \Omega$ Right Plot, $\mathrm{V}_{\text {in }}=100 \mathrm{mV}$, System DDJ = $\mathbf{2 5} \mathrm{ps}$)

Figure 11. Typical Differential Output Waveform $2.5 \mathrm{~Gb} / \mathrm{s}$
($\mathrm{R}_{\mathrm{L}}=50 \Omega$ Left Plot, $\mathrm{R}_{\mathrm{L}}=\mathbf{2 5} \Omega$ Right Plot, $\mathrm{V}_{\mathrm{in}}=100 \mathrm{mV}$, System DDJ = $\mathbf{2 4} \mathrm{ps}$)

Figure 12. AC Reference Measurement

Figure 13. Typical Termination for Output Driver and Device Evaluation

Figure 14. Differential Input Driven Single-Ended

Figure 16. V_{th} Diagram

Figure 15. Differential Inputs Driven Differentially

Figure 17. V $_{\text {CMR }}$ Diagram

NB4N11M

Figure 18. CML Input and Output Structure

NB4N11M

Figure 19. Typical Examples of the Application Interface

ORDERING INFORMATION

Device	Package	Shipping †
NB4N11MDTR2G	TSSOP-8 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TSSOP 8

CASE 948R-02

ISSUE A
DATE 04/07/2000

SCALE 2:1

notes:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PROTRUSI
PER SIDE
5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
A	2.90	3.10	0.114	0.122		
B	2.90	3.10	0.114	0.122		
C	0.80	1.10	0.031	0.043		
D	0.05	0.15	0.002	0.006		
F	0.40	0.70	0.016	0.028		
G	0.65 BSC		0.026 BSC			
K	0.25		0.40	0.010		0.016
L	4.90 BSC		0.193 BSC			
M	0°		6°	0°		6°

| DOCUMENT NUMBER: | 98AONO0236D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP 8 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB3N2304NZDTR2G NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7

