3.3 V Differential 1:21 Differential Fanout Clock Driver with HCSL level Output

NB4N121K

Description

The NB4N121K is a Clock differential input fanout distribution 1 to 21 HCSL level differential outputs, optimized for ultra low propagation delay variation. The NB4N121K is designed with HCSL clock distribution for FBDIMM applications in mind.

Inputs can accept differential LVPECL, CML, or LVDS levels. Single-ended LVPECL, CML, LVCMOS or LVTTL levels are accepted with the proper $V_{\text {REFAC }}$ supply (see Figures 5, 10, 11, 12, and 13). Clock input pins incorporate an internal 50Ω on die termination resistors.

Output drive current at $\mathrm{I}_{\text {REF }}$ (Pin 1) for 1 X load is selected by connecting to GND. To drive a 2 X load, connect $\mathrm{I}_{\text {REF }}$ to V_{CC}. See Figure 9.

The NB4N121K specifically guarantees low output-to-output skews. Optimal design, layout, and processing minimize skew within a device and from device to device. System designers can take advantage of the NB4N121K's performance to distribute low skew clocks across the backplane or the motherboard.

Features

- Typical Input Clock Frequency 100, 133, 166, 200, 266, 333 and 400 MHz
- 340 ps Typical Rise and Fall Times
- 800 ps Typical Propagation Delay
- Δ tpd 100 ps Maximum Propagation Delay Variation Per Each Differential Pair
- Additive Phase RMS Jitter: 1 ps Max
- Operating Range: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
- Differential HCSL Output Level (700 mV Peak-to-Peak)
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

QFN-52 MN SUFFIX CASE 485M

> MARKING DIAGRAM*
> 52
> A = Assembly Site
> WL = Wafer Lot
> YY = Year
> WW = Work Week
> $\mathrm{G} \quad=\mathrm{Pb}$-Free Package
*For additional marking information, refer to Application Note AND8002/D.

Figure 1. Pin Configuration (Top View)

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

NB4N121K

Figure 2. Pinout Configuration (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	1/0	Description
1	$I_{\text {REF }}$	Output	Output current programming pin to select load drive. For 1X configuration, connect $\mathrm{I}_{\mathrm{REF}}$ to GND, or for 2X configuration, connect $\mathrm{I}_{\mathrm{REF}}$ to V_{CC} (See Figure 9).
2	GND	-	Supply Ground. GND pin must be externally connected to power supply to guarantee proper operation.
3, 6	VTCLK, VTCLK	-	Internal 50Ω Termination Resistor connection Pins. In the differential configuration when the input termination pins are connected to the common termination voltage, and if no signal is applied then the device may be susceptible to self-oscillation.
4	CLK	LVPECL Input	CLOCK Input (TRUE)
5	CLK	LVPECL Input	CLOCK Input (INVERT)
7, 26, 39, 52	V_{CC}	-	Positive Supply pins. V_{CC} pins must be externally connected to a power supply to guarantee proper operation.
$\begin{gathered} 8,10,12,14,16,18,20,22, \\ 24,27,29,31,33,35,37,40, \\ 42,44,46,48,50 \end{gathered}$	Q[20-0]	HCSL Output	Output (INVERT)
$\begin{gathered} 9,11,13,15,17,19,21,23, \\ 25,28,30,32,34,36,38,41, \\ 43,45,47,49,51 \end{gathered}$	Q[20-0]	HCSL Output	Output (TRUE)
Exposed Pad	EP	GND	Exposed Pad. The thermally exposed pad (EP) on package bottom (see case drawing) must be attached to a sufficient heat-sinking conduit for proper thermal operation. (Note 1)

[^0]Table 2. ATTRIBUTES

Characteristic	Value
Input Default State Resistors	None
ESD Protection Human Body Model Machine Model	$>2 \mathrm{kV}$
Moisture Sensitivity (Note 2) QFN-52	400 V
Flammability Rating Oxygen Index: 28 to 34	Level 1
Transistor Count	UL 94 V-0 @ 0.125 in
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	622

2. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS (Note 3)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit	
V_{CC}	Positive Power Supply	GND $=0 \mathrm{~V}$		4.6	V	
V_{1}	Positive Input	GND $=0 \mathrm{~V}$		GND - $0.3 \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\text {cc }}$	V	
$\mathrm{V}_{\text {INPP }}$	Differential Input Voltage \quad \|CLK - CLKb				V_{CC}	V
Iout	Output Current	Continuous Surge		$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
$\mathrm{T}_{\text {A }}$	Operating Temperature Range	QFN-52		-40 to +70	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$	
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient) (Note 3)	$\begin{array}{\|l\|} \hline 0 \text { lfpm } \\ 500 \text { lfpm } \end{array}$	$\begin{aligned} & \text { QFN-52 } \\ & \text { QFN-52 } \end{aligned}$	$\begin{gathered} \hline 25 \\ 19.6 \end{gathered}$	$\begin{aligned} & \hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	2S2P (Note 4)	QFN-52	21	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
$\mathrm{T}_{\text {sol }}$	Wave Solder Pb-Free			265	${ }^{\circ} \mathrm{C}$	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
3. JEDEC standard 51-6, multilayer board - 2S2P (2 signal, 2 power).
4. JEDEC standard multilayer board - 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

NB4N121K

Table 4. DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Note 5)

Symbol	Characteristic		Min	Typ	Max	Unit
IGND	GND Supply Current (All Outputs Loaded)		70	98	120	mA
I_{CC}	Power Supply Current (All Outputs Loaded)	$\begin{aligned} & 1 X \\ & 2 X \end{aligned}$		$\begin{aligned} & \hline 420 \\ & 780 \end{aligned}$		mA
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current CLKx, CLKx			2.0	150	$\mu \mathrm{A}$
IIL	Input LOW Current CLKx, CLKx		-150	-2.0		$\mu \mathrm{A}$

DIFFERENTIAL INPUT DRIVEN SINGLE-ENDED (Figures 5 and 7)

V_{th}	Input Threshold Reference Voltage Range (Note 6)	1050		$\mathrm{~V}_{\mathrm{CC}}-150$	mV
V_{IH}	Single-Ended Input HIGH Voltage	$\mathrm{V}_{\mathrm{th}}+150$		$\mathrm{~V}_{\mathrm{CC}}$	mV
V_{IL}	Single-Ended Input LOW Voltage	GND		$\mathrm{V}_{\mathrm{th}}-150$	mV

DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 6 and 8)

$\mathrm{V}_{\text {IHD }}$	Differential Input HIGH Voltage	1200		$\mathrm{~V}_{\mathrm{CC}}$	mV
$\mathrm{V}_{\text {ILD }}$	Differential Input LOW Voltage	GND		$\mathrm{V}_{\mathrm{CC}}-75$	mV
$\mathrm{V}_{\text {ID }}$	Differential Input Voltage $\left(\mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}\right)$	75		2400	mV
$\mathrm{V}_{\text {CMR }}$	Input Common Mode Range	1163		$\mathrm{~V}_{\mathrm{CC}}-75$	

HCSL OUTPUTS (Figure 4)

V_{OH}	Output HIGH Voltage	600	740	900
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Voltage	-150	0	150

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
5. Input parameters vary $1: 1$ with V_{Cc}. Measurements taken with outputs in either 1 X (all outputs loaded 50Ω to GND) or 2 X (all outputs loaded 25Ω to GND) configuration, see Figure 9. For 1X configuration, connect IREF to GND, or for 2 X configuration, connect IREF to V_{CC}.
6. V_{th} is applied to the complementary input when operating in single ended mode.

Table 5. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V} ;-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Note 7)

Symbol	Characteristic	Min	Typ	Max	Unit
V OUTPP	Output Voltage Amplitude (@ $\mathrm{V}_{\text {INPPmin }}$) ${ }^{\text {a }}$ (${ }^{\text {in }}=133 \mathrm{MHz}$		$\begin{aligned} & 725 \\ & 725 \\ & 725 \end{aligned}$	$\begin{aligned} & \hline 900 \\ & 900 \\ & 900 \end{aligned}$	mV
$\begin{aligned} & \text { tpLH, } \\ & \text { tpHL }^{2} \end{aligned}$	Propagation Delay to (See Figure 3) CLK/CLK to Qx/Qx	550	800	950	ps
$\Delta \mathrm{t}_{\mathrm{PLH}}$, $\Delta t_{\text {PHL }}$	Propagation Delay Variations Variation Per Each Diff Pair CLK/CLK to Qx/Qx (Note 8) (See Figure 3)			100	ps
${ }_{\text {t }}^{\text {SKEW }}$	Duty Cycle Skew (Note 9) Within-Device Skew, 1X Mode Only (Note 10) Within-Device Skew, 2X Mode (Note 10) Device-to-Device Skew (Note 10)			$\begin{gathered} 20 \\ 50 \\ 80 \\ 150 \end{gathered}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \mathrm{ps} \\ & \mathrm{ps} \\ & \hline \end{aligned}$
$\mathrm{t}_{\mathrm{jit}(\text { (})}$	Additive RMS Phase RMS (Note 11) $\mathrm{fin}_{\text {in }}=133 \mathrm{MHz}$ to 200 MHz			1	ps
$\mathrm{V}_{\text {cross }}$	Absolute Crossing Magnitude Voltage	250		550	mV
$\Delta \mathrm{V}_{\text {cross }}$	Variation in Magnitude of $\mathrm{V}_{\text {cross }}$			150	mV
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Absolute Magnitude in Output Risetime and Falltime (From 175 mV to 525 mV)	175	340	700	ps
$\Delta \mathrm{t}_{\mathrm{r},} \Delta \mathrm{t}_{\mathrm{f}}$	Variation in Magnitude of Risetime and Falltime (Single-Ended) Qx, $\overline{Q x}$ (See Figure 4) 1 X 2 XX			$\begin{aligned} & 125 \\ & 150 \end{aligned}$	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
7. Measured by forcing $\mathrm{V}_{\text {INPP }}$ (MIN) from a 50% duty cycle clock source. Measurements taken with outputs in either 1X (all outputs loaded 50Ω to GND) or 2 X (all outputs loaded 25Ω to GND) configuration, see Figure 9. For 1X configuration, connect I IREF to GND, or for 2 X configuration, connect $I_{\text {REF }}$ to V_{CC}. Typical gain is 20 dB .
8. Measured from the input pair crosspoint to each single output pair crosspoint across temp and voltage ranges.
9. Duty cycle skew is measured between differential outputs using the deviations of the sum of Tpw- and Tpw+.
10. Skew is measured between outputs under identical transition @ 133 MHz .
11. Additive RMS jitter with 50% duty cycle clock signal using phase noise integrated from 12 KHz to 33 MHz

Figure 3. AC Reference Measurement

Figure 4. HCSL Output Parameter Characteristics

Figure 5. Differential Input Driven
Single-Ended ($\mathbf{V}_{\text {th }}=\mathbf{V}_{\text {REFAC }}$)

Figure 6. Differential Inputs Driven Differentially

Figure 7. $\mathrm{V}_{\text {th }}$ Diagram
Figure 8. $\mathbf{V}_{\text {CMR }}$ Diagram

Figure 9. Typical Termination Configuration for Output Driver and Device Evaluation C_{Lx} for Test Only (Representing Receiver Input Loading); Not Added to Application

*RTIN, Internal Input Termination Resistor

Figure 10. LVPECL Interface

*RTIN, Internal Input Termination Resistor

Figure 11. LVDS Interface

NB4N121K

*RTIN, Internal Input Termination Resistor
Figure 12. Standard 50Ω Load CML Interface

*RTIN, Internal Input Termination Resistor
Figure 13. LVCMOS/LVTTL Interface

Figure 14. HCSL Output Structure

ORDERING INFORMATION

Device	Package	Shipping †
NB4N121KMNR2G	QFN-52	(Pb-Free)

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

QFN52 8x8, 0.5P
CASE 485M-01
ISSUE C
DATE 16 FEB 2010

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.80	1.00
A1	0.00	0.05
A2	0.60	0.80
A3	0.20	
REF		
b	0.18	
D	8.00	
D2	6.50	
E	8.00	
E2	6.80	
e	0.50	
0.50		6.80
K	0.20	---
L	0.30	0.50

GENERIC MARKING DIAGRAM

| DOCUMENT NUMBER: | 98AON12057D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | 52 PIN QFN, 8X8, 0.5P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK854BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7 ADCLK905BCPZ-WP

[^0]: 1. The exposed pad must be connected to the circuit board ground.
