3.3 V AnyLevel™ Receiver to CML Driver/Translator with Input Hysteresis

2.0 GHz Clock / 2.5 Gb/s Data

The NB4N316M is a differential Clock or Data receiver and will accept AnyLevel input signals: LVPECL, CML, LVCMOS, LVTTL, or LVDS. These signals will be translated to CML, operating up to 2.0 GHz or 2.5 Gb/s, respectively. As such, the NB4N316M is ideal for SONET, GigE, Fiber Channel, Backplane and other Clock or Data distribution applications. The CML outputs are 16 mA open collector (see Figure 18) which requires resistor (R_L) load path to V_{TT} termination voltage (see Figure 19). The open collector CML outputs must be terminated to V_{TT} at power up. The differential outputs produce Current–Mode Logic (CML) compatible levels when the receiver is loaded with 50 Ω or 25 Ω loads connected to 1.8 V, 2.5 V or 3.3 V supplies. This simplifies device interface by eliminating a need for coupling capacitors.

The NB4N316M features an input threshold hysteresis of approximately 25 mV, providing increased noise immunity and stability.

The device is offered in a small 8-pin TSSOP package (MSOP-8 compatible). Application notes, models, and support documentation are available at www.onsemi.com.

Features

- Maximum Input Clock Frequency > 2.0 GHz
- Maximum Input Data Rate > 2.5 Gb/s
- Typically 1 ps of RMS Clock Jitter
- Typically 10 ps of Data Dependent Jitter
- 550 ps Typical Propagation Delay
- 150 ps Typical Rise and Fall Times
- Differential CML Outputs
- 25 mV of Receiver Input Threshold Hysteresis
- Operating Range: $V_{CC} = 3.0 \text{ V}$ to 3.6 V with $V_{EE} = 0 \text{ V}$ and $V_{TT} = 1.8 \text{ V}$ to 3.6 V
- Functionally Compatible with Existing 2.5 V / 3.3 V LVEL, LVEP, EP, and SG Devices
- -40°C to +85°C Ambient Operating Temperature
- These are Pb-Free Devices*

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM*

TSSOP-8 DT SUFFIX CASE 948R

A = Assembly Location

L = Wafer Lot Y = Year W = Work Week ■ Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

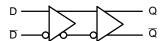


Figure 1. Functional Block Diagram

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

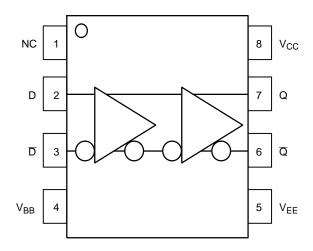


Figure 2. Pinout (Top View) and Logic Diagram

Table 1. Pin Description

Pin	Name	I/O	Description
1	NC	-	No Connect.
2	D	ECL, CML, LVCMOS, LVDS, LVTTL Input	Noninverted Differential Input. (Note 1)
3	D	ECL, CML, LVCMOS, LVDS, LVTTL Input	Inverted Differential Input. (Note 1)
4	V_{BB}	-	Internally Generated Reference Voltage Supply.
5	V _{EE}	-	Negative Supply Voltage.
6	Q	CML Output	Inverted Differential Output. Typically Terminated with 50 Ω Resistor to V _{TT} .
7	Q	CML Output	Noninverted Differential Output. Typically Terminated with 50 Ω Resistor to V _{TT} .
8	V _{CC}	-	Positive Supply Voltage.

^{1.} In the differential configuration if no signal is applied on D/D input, then the device will be susceptible to self–oscillation.

Table 2. ATTRIBUTES

Characteri	Value					
ESD Protection	Human Body Model Machine Model	> 1000 V > 70 V				
Moisture Sensitivity (Note 1)	8-TSSOP	Level 3				
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in				
Transistor Count	225					
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test						

^{1.} For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	V _{EE} = -0.5 V		4	V
V _{EE}	Negative Power Supply	V _{CC} = +0.5 V		-4	V
VI	Positive Input Negative Input	V _{EE} = 0 V V _{CC} = 0 V	$V_{I} = V_{CC} + 0.4 \text{ V}$ $V_{I} = V_{EE} - 0.4 \text{ V}$	4 -4	V V
Vo	Output Voltage Minimum Maximum			V _{EE} + 600 V _{CC} + 400	mV mV
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction–to–Ambient) (Note 2)	0 lfpm 500 lfpm	TSSOP-8 TSSOP-8	190 130	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	1S2P (Note 2)	TSSOP-8	41 to 44	°C/W
T _{sol}	Wave Solder	< 3 Sec @ 260°C		265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2. JEDEC standard multilayer board – 1S2P (1 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 4. DC CHARACTERISTICS, CLOCK Inputs, CML Outputs $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{EE} = 0 \text{ V}$, $T_A = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$

Symbol	Characteristic	Min	Тур	Max	Unit
Icc	Power Supply Current (Inputs and Outputs Open)		20	30	mA
$R_L = 50 \Omega$,	V _{TT} = 3.6 V to 2.5 V	•	•		
V _{OH}	Output HIGH Voltage (Note 3)	V _{TT} – 60	V _{TT} – 10	V_{TT}	mV
V _{OL}	Output LOW Voltage (Note 3)	V _{TT} – 1100	V _{TT} – 800	V _{TT} – 640	mV
V _{OD}	Differential Output Voltage Magnitude	640	780	1000	mV
$R_L = 25 \Omega$,	V _{TT} = 3.6 V to 2.5 V ±5%				
V _{OH}	Output HIGH Voltage (Note 3)	V _{TT} – 60	V _{TT} – 10	V _{TT}	mV
V _{OL}	Output LOW Voltage (Note 3)	V _{TT} – 550	V _{TT} – 400	V _{TT} – 320	mV
V _{OD}	Differential Output Voltage Magnitude	320	390	500	mV
$R_L = 50 \Omega$,	V _{TT} = 1.8 V ±5%				
V _{OH}	Output HIGH Voltage (Note 3)	V _{TT} – 170	V _{TT} – 10	V _{TT}	mV
V _{OL}	Output LOW Voltage (Note 3)	V _{TT} – 1100	V _{TT} – 800	V _{TT} – 640	mV
V _{OD}	Differential Output Voltage Magnitude	570	780	1000	mV
$R_L = 25 \Omega$	V _{TT} = 1.8 V ±5%	•	•		•
V _{OH}	Output HIGH Voltage (Note 3)	V _{TT} – 85	V _{TT} – 10	V_{TT}	mV
V _{OL}	Output LOW Voltage (Note 3)	V _{TT} – 500	V _{TT} – 400	V _{TT} – 320	mV
V _{OD}	Differential Output Voltage Magnitude	285	390	500	mV
DIFFEREN	TIAL INPUT DRIVEN SINGLE-ENDED (Figures 14 and 16)				
V _{th}	Input Threshold Reference Voltage Range (Note 5)	V _{EE}		V _{CC}	mV
V _{IH}	Single-ended Input HIGH Voltage	V _{th} + 100		V _{CC} + 400	mV
V _{IL}	Single-ended Input LOW Voltage	V _{EE} – 400		V _{th} – 100	mV
V _{BB}	Internally Generated Reference Voltage Supply (Loaded with –100 μA)	V _{CC} – 1500	V _{CC} – 1400	V _{CC} – 1300	mV
DIFFEREN	TIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 15 and 17)				
V _{IHD}	Differential Input HIGH Voltage	V _{EE}		V _{CC} + 400	mV
V _{ILD}	Differential Input LOW Voltage	V _{EE} – 400		V _{CC} – 100	mV
V _{CMR}	Input Common Mode Range (Differential Configuration)	V _{EE}		V _{CC}	mV
V _{ID(HYST)}	Differential Input Voltage Hysteresis (V _{IHD} – V _{ILD})		25		mV
V _{ID}	Differential Input Voltage Magnitude (V _{IHD} – V _{ILD}) (Note 7)	100		V _{CC} – V _{EE}	mV
C _{IN}	Input Capacitance (Note 7)		1.5		pF

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- board with maintained transverse airflow greater than 500 ftpm.
 CML outputs require R_L receiver termination resistors to V_{TT} for proper operation. Outputs must be connected through R_L to V_{TT} at power up. The output parameters vary 1:1 with V_{TT}. V_{TT} = 1.71 V to 3.6 V.
 Input parameters vary 1:1 with V_{CC}.
 V_{th} is applied to the complementary input when operating in single–ended mode.
 V_{CMR} (MIN) varies 1:1 with V_{EE}, V_{CMR} max varies 1:1 with V_{CC}.
 Parameter guaranteed by design and evaluation but not tested in production.

Table 5. AC CHARACTERISTICS $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{EE} = 0 \text{ V}$; (Note 8)

		-40°C		25°C		85°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OUTPP}	$ \begin{array}{ll} \text{Output Voltage Amplitude } (R_L = 50 \ \Omega) \\ f_{in} \leq 1 \ \text{GHz} \\ \text{(See Figure 12)} & f_{in} \leq 1.5 \ \text{GHz} \\ f_{in} \leq 2.0 \ \text{GHz} \\ \end{array} $	550 400 200	660 640 400		550 400 200	660 640 400		550 400 200	660 640 400		mV
V _{OUTPP}	$ \begin{array}{ll} \text{Output Voltage Amplitude } (R_L = 25 \ \Omega) \\ & f_{in} \leq 1 \ \text{GHz} \\ \text{(See Figure 12)} & f_{in} \leq 1.5 \ \text{GHz} \\ & f_{in} \leq 2.0 \ \text{GHz} \\ \end{array} $	280 280 200	370 360 300		280 280 200	370 360 400		280 280 200	370 360 400		mV
f _{DATA}	Maximum Operating Data Rate	1.5	2.5		1.5	2.5		1.5	2.5		Gb/s
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential @ 0.25 GHz	350	550	750	350	550	750	350	550	750	ps
t _{SKEW}	Duty Cycle Skew (Note 9) Device to Device Skew (Note 13)		2 20	20 100		2 20	20 100		2 20	20 100	ps
t JITTER	RMS Random Clock Jitter $R_L = 50~\Omega$ and $R_L = 25~\Omega$ (Note 11) $ \begin{aligned} f_{in} &= 750~\text{MHz} \\ f_{in} &= 1.5~\text{GHz} \\ f_{in} &= 2.0~\text{GHz} \end{aligned} $ Peak-to-Peak Data Dependent Jitter $R_L = 50~\Omega$ fDATA = 1.5 Gb/s (Note 12) fDATA = 2.5 Gb/s Peak-to-Peak Data Dependent Jitter $R_L = 25~\Omega$ fDATA = 1.5 Gb/s (Note 12) fDATA = 2.5 Gb/s		1 1 1 15 20 5 10	3 3 3 55 85 35		1 1 1 15 20 5 10	3 3 3 55 85 35		1 1 1 15 20 5 10	3 3 3 55 85 35	ps
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 10)	200			200			200			mV
t _r t _f	Output Rise/Fall Times @ 0.25 GHz Q, Q (20% – 80%)		150	300		150	300		150	300	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- 8. Measured by forcing V_{INPP} (MIN) from a 50% duty cycle clock source. All output loaded with an external R_L = 50 Ω and R_L = 25 Ω to V_{TT} . Outputs must be connected through R_L to V_{TT} at power up. Input edge rates 150 ps (20% – 80%).
- 9. Duty cycle skew is measured between differential outputs using the deviations of the sum of T_{pw} and T_{pw} @ 0.25 GHz. 10. V_{INPP} (MAX) cannot exceed $V_{CC} V_{EE}$. Input voltage swing is a single–ended measurement operating in differential mode.
- 11. Additive RMS jitter with 50% duty cycle clock signal.
- 12. Additive peak-to-peak data dependent jitter with input NRZ data signal (PRBS 2²³–1).
- 13. Device to device skew is measured between outputs under identical transition @ 0.5 GHz.

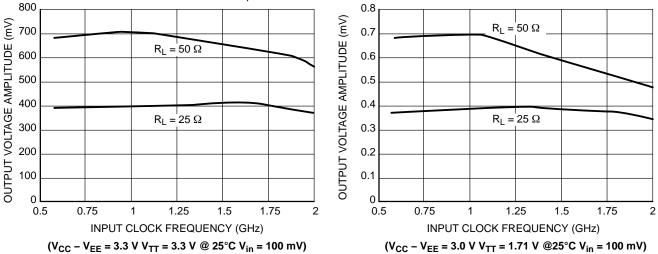


Figure 3. Output Voltage Amplitude (V_{OUTPP}) versus Input Clock Frequency (f_{IN}) at Ambient Temperature (Typical)

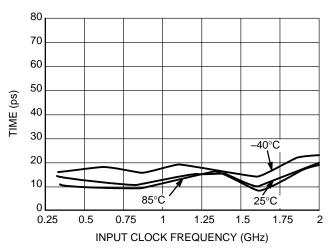
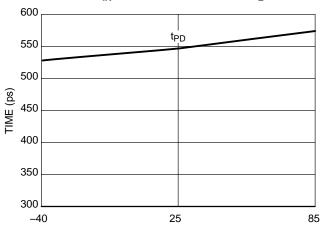



Figure 4. Data Dependent Jitter vs. Frequency and Temperature (V_{CC} – V_{EE} = 3.3 V; V_{TT} = 3.3 V @ 25°C; V_{IN} = 100 mV; PRBS 2^{23} –1; R_L = 50 Ω)

TEMPERATURE (°C) Figure 6. Typical Propagation Delay vs. Temperature (V_{CC} – V_{EE} = 3.3 V; V_{TT} = 3.3 V @ 25°C; V_{in} = 100 mV; R_L = 50 Ω)

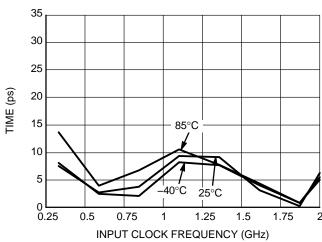


Figure 5. Data Dependent Jitter vs. Frequency and Temperature (V_{CC} – V_{EE} = 3.3 V; V_{TT} = 3.3 V @ 25°C; V_{IN} = 100 mV; PRBS 2^{23} –1; R_L = 25 Ω)

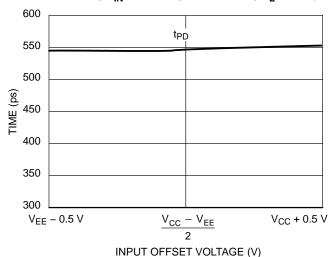


Figure 7. Typical Propagation Delay vs. Input Offset Voltage ($V_{CC} - V_{EE} = 3.3 \text{ V}; V_{TT} = 3.3 \text{ V}$ @ 25°C; $V_{in} = 100 \text{ mV R}_L = 50 \Omega$)

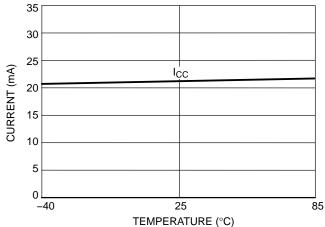


Figure 8. Supply Current vs. Temperature

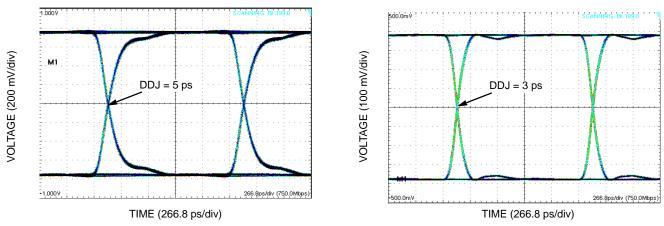


Figure 9. Typical Differential Output Waveform at 750 Mb/s (R_L = 50 Ω Left Plot, R_L = 25 Ω Right Plot, V_{in} = 100 mV, System DDJ = 24 ps)

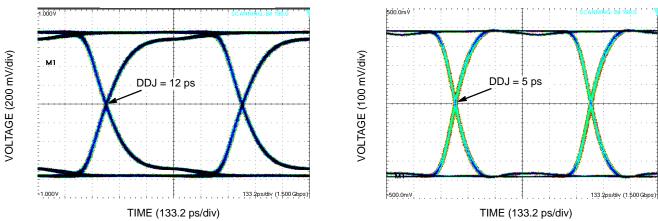


Figure 10. Typical Differential Output Waveform 1.5 Gb/s (R $_L$ = 50 Ω Left Plot, R $_L$ = 25 Ω Right Plot, V $_{in}$ = 100 mV, System DDJ = 25 ps)

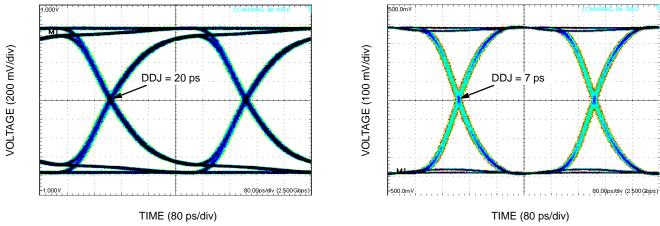


Figure 11. Typical Differential Output Waveform 2.5 Gb/s (R_L = 50 Ω Left Plot, R_L = 25 Ω Right Plot, V_{in} = 100 mV, System DDJ = 24 ps)

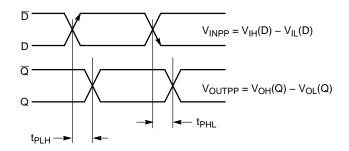


Figure 12. AC Reference Measurement

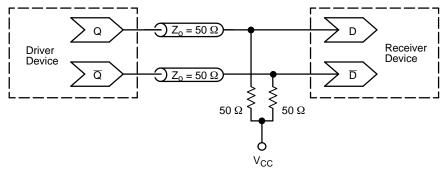


Figure 13. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

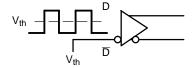


Figure 14. Differential Input Driven Single-Ended

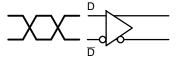


Figure 15. Differential Inputs Driven Differentially

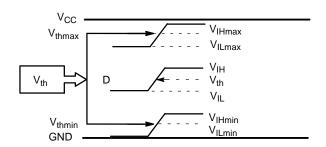


Figure 16. V_{th} Diagram

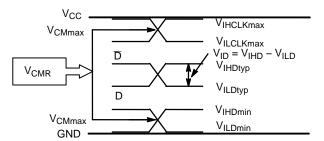


Figure 17. V_{CMR} Diagram

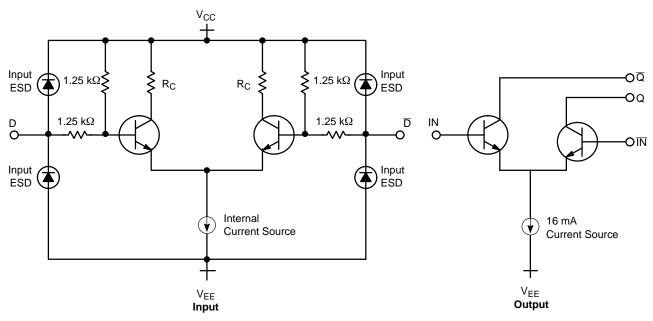


Figure 18. CML Input and Output Structure

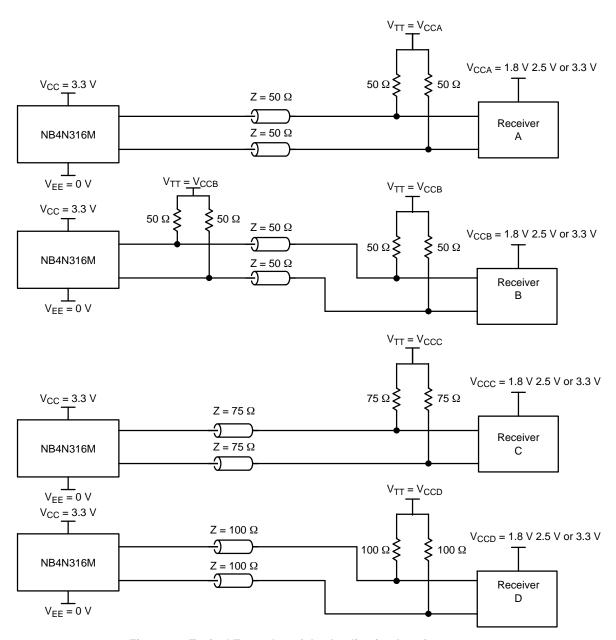


Figure 19. Typical Examples of the Application Interface

ORDERING INFORMATION

Device	Package	Shipping [†]
NB4N316MDTG	TSSOP-8 (Pb-Free)	100 Units / Rail
NB4N316MDTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit

AN1504/D – Metastability and the ECLinPS Family
AN1568/D – Interfacing Between LVDS and ECL

AN1672/D – The ECL Translator Guide

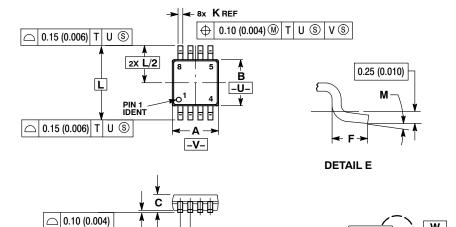
AND8001/D - Odd Number Counters Design

AND8002/D - Marking and Date Codes

AND8020/D - Termination of ECL Logic Devices

AND8066/D - Interfacing with ECLinPS

AND8090/D - AC Characteristics of ECL Devices


-T- SEATING PLANE

TSSOP 8 CASE 948R-02 ISSUE A

DETAIL E

DATE 04/07/2000

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH. OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD
- FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 5. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	2.90	3.10	0.114	0.122	
С	0.80	1.10	0.031	0.043	
D	0.05	0.15	0.002	0.006	
F	0.40	0.70	0.016	0.028	
G	0.65 BSC		0.026 BSC		
K	0.25	0.40	0.010	0.016	
L	4.90 BSC		0.193 BSC		
M	0°	6 °	0° 6°		

DOCUMENT NUMBER:	98AON00236D	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	TSSOP 8		PAGE 1 OF 1				

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bus Receivers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

PI90LVT386AEX PI90LVT386AE NB4N316MDTR2G SN75107ADR PI90LV032ALE PI90LV028AWEX DS1489AMX EL9110IUZ

MC100LVEL16DG MC100LVEL16DR2G MC100EL16DTR2G MC100EP116FAG MC100EP17DTG MC100LVEL16DTG

MC10EP17DTG MC10H115PG NB100LVEP17MNG VMC10E111FN SN75182NSR MC1489D1 DS8820AN SN75LVDS82DGGR

MC100LVEL16DTR2G PI90LV028AWE 701798X 701798XB DS1489AM STLVDS32BTR 5962-9164001MFA DS3486M/NOPB

DS34C86TM/NOPB DS34LV86TM SN75107AD SN75107AN SN75107ANE4 SN75107BD SN75107BDR SN75107BN SN75115D

SN75115N SN75115NE4 SN75115NSR SN75124N SN75140P SN75140PSR SN75154D SN75154N SN75182D SN75182DR SN75182N