Translator, 3.3 V, 2.5 Gb/s Dual AnyLevel & trade; to LVDS Receiver/Driver/ Buffer, with Internal Termination

NB4N527S is a clock or data Receiver/Driver/Buffer/Translator capable of translating AnyLevelTM input signal (LVPECL, CML, HSTL, LVDS, or LVTTL/LVCMOS) to LVDS. Depending on the distance, noise immunity of the system design, and transmission line media, this device will receive, drive or translate data or clock signals up to 2.5 Gb/s or 1.5 GHz, respectively.

The NB4N527S has a wide input common mode range of GND + 50 mV to V_{CC} – 50 mV combined with two 50 Ω internal termination resistors is ideal for translating differential or single–ended data or clock signals to 350 mV typical LVDS output levels without use of any additional external components (Figure 6).

The device is offered in a small 3 mm x 3 mm QFN-16 package. NB4N527S is targeted for data, wireless and telecom applications as well as high speed logic interface where jitter and package size are main requirements. Application notes, models, and support documentation are available on www.onsemi.com.

- Maximum Input Clock Frequency up to 1.5 GHz
- Maximum Input Data Rate up to 2.5 Gb/s (Figure 5)
- 470 ps Maximum Propagation Delay
- 1 ps Maximum RMS Jitter
- 140 ps Maximum Rise/Fall Times
- Single Power Supply; $V_{CC} = 3.3 \text{ V} \pm 10\%$
- Temperature Compensated TIA/EIA-644 Compliant LVDS Outputs
- Internal 50 Ω Termination Resistor per Input Pin
- GND + 50 mV to V_{CC} 50 mV V_{CMR} Range
- These are Pb-Free Devices

ON Semiconductor®

http://onsemi.com

(Note: Microdot may be in either location)

Figure 1. Functional Block Diagram

*R_{TIN}

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

Figure 3. Pin Configuration (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Description
1	VTD1	-	Internal 50 Ω termination pin for D1. (R _{TIN})
2	D1	LVPECL, CML, LVDS, LVCMOS, LVTTL, HSTL	Noninverted differential clock/data D1 input (Note 1).
3	D1	LVPECL, CML, LVDS, LVCMOS, LVTTL, HSTL	Inverted differential clock/data $\overline{D1}$ input (Note 1).
4	VTD1	-	Internal 50 Ω termination pin for $\overline{D1}$. (R _{TIN})
5	GND	-	0 V. Ground.
6, 7	NC		No connect.
8	V _{CC}		Positive Supply Voltage.
9	<u>Q1</u>	LVDS Output	Inverted D1 output. Typically loaded with 100 Ω receiver termination resistor across differential pair.
10	Q1	LVDS Output	Noninverted D1 output. Typically loaded with 100 Ω receiver termination resistor across differential pair.
11	<u>Q0</u>	LVDS Output	Inverted D0 output. Typically loaded with 100 Ω receiver termination resistor across differential pair.
12	Q0	LVDS Output	Noninverted D0 output. Typically loaded with 100 Ω receiver termination resistor across differential pair.
13	VTD0	-	Internal 50 Ω termination pin for D0.
14	D0	LVPECL, CML, LVDS, LVCMOS, LVTTL, HSTL	Noninverted differential clock/data D0 input (Note 1).
15	DO	LVPECL, CML, LVDS, LVCMOS, LVTTL, HSTL	Inverted differential clock/data $\overline{\text{D0}}$ input (Note 1).
16	VTD0	_	Internal 50 Ω termination pin for $\overline{\text{D0}}$.
EP			Exposed pad. EP on the package bottom is thermally connected to the die improved heat transfer out of package. The pad is not electrically connected to the die, but is recommended to be soldered to GND on the PCB.

 In the differential configuration when the input termination pins(VTD0/VTD0, VTD1/ VTD1) are connected to a common termination voltage or left open, and if no signal is applied on D0/D0, D1/D1 input, then the device will be susceptible to self-oscillation.

Table 2. ATTRIBUTES

Characte	Value					
Moisture Sensitivity (Note 2)	Level 1					
Flammability Rating Oxygen Index:		UL 94 V–0 @ 0.125 in				
ESD Protection	Human Body Model Machine Model Charged Device Model	> 2 kV > 200 V > 1 kV				
Transistor Count	281					
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test						

2. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V		3.8	V
VI	Positive Input	GND = 0 V	V _I = V _{CC}	3.8	V
I _{IN}	Input Current Through R_T (50 Ω Resistor)	Static Surge		35 70	mA mA
I _{OSC}	Output Short Circuit Current Line-to-Line (Q to Q) Line-to-End (Q or Q to GND)	Q or \overline{Q} to GND Q to \overline{Q}	Continuous Continuous	12 24	mA
T _A	Operating Temperature Range	QFN-16		-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 3)	0 lfpm 500 lfpm	QFN–16 QFN–16	41.6 35.2	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	1S2P (Note 3)	QFN-16	4.0	°C/W
T _{sol}	Wave Solder Pb Pb-Free			265 265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

3. JEDEC standard multilayer board - 1S2P (1 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 4. DC CHARACTERISTICS	CLOCK INPUTS, LV	DS OUTPUTS V _{CC} = 3.0 \	/ to 3.6 V, GND = 0 V, T _A = -	-40°C to +85°C
		00	, , , ,	

Table 4. DC CHARACTERISTICS, CLOCK INFOTS, LVDS OUTFOTS $V_{CC} = 3.0 \ V$ to 3.6 V, GND = 0 V, $T_A = -40^{\circ}$ to $+85^{\circ}$ C								
Symbol	Characteristic		Тур	Max	Unit			
I _{CC}	Power Supply Current (Note 8)		40	53	mA			
DIFFERE	DIFFERENTIAL INPUTS DRIVEN SINGLE-ENDED (Figures 11, 12, 16, and 18)							
V _{th}	Input Threshold Reference Voltage Range (Note 7)	GND +100		V _{CC} – 100	mV			
VIH	Single-ended Input HIGH Voltage	V _{th} + 100		V _{CC}	mV			
VIL	Single-ended Input LOW Voltage	GND		V _{th} – 100	mV			
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 7, 8, 9, 10, 17, and 19)								
V _{IHD}	Differential Input HIGH Voltage	100		V _{CC}	mV			
V _{ILD}	Differential Input LOW Voltage	GND		V _{CC} – 100	mV			
V _{CMR}	Input Common Mode Range (Differential Configuration)	GND + 50		V _{CC} – 50	mV			
V _{ID}	Differential Input Voltage (V _{IHD} – V _{ILD})	100		V _{CC}	mV			
RTIN	Internal Input Termination Resistor	40	50	60	Ω			

LVDS OUTPUTS (Note 4)

R_{TIN}

V _{OD}	Differential Output Voltage	250		450	mV
ΔV_{OD}	Change in Magnitude of V _{OD} for Complementary Output States (Note 9)		1	25	mV
V _{OS}	Offset Voltage (Figure 15)	1125		1375	mV
ΔV_{OS}	Change in Magnitude of V_{OS} for Complementary Output States (Note 9)	0	1	25	mV
V _{OH}	Output HIGH Voltage (Note 5)		1425	1600	mV
V _{OL}	Output LOW Voltage (Note 6)	900	1075		mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

4. LVDS outputs require 100 Ω receiver termination resistor between differential pair. See Figure 14.

5. $V_{OL}max = V_{OS}max + \frac{1}{2}V_{OD}max$. 6. $V_{OL}max = V_{OS}min - \frac{1}{2}V_{OD}max$. 7. V_{th} is applied to the complementary input when operating in single-ended mode.

8. Input termination pins open, Dx/Dx at the DC level within V_{CMR} and output pins loaded with $R_L = 100 \Omega$ across differential. 9. Parameter guaranteed by design verification not tested in production.

r								r			
			-40°C		25°C			85°C		l	
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OUTPP}	Output Voltage Amplitude (@ V $_{INPPmin}$) f $_{in}$ \leq 1.0 GHz (Figure 4) f $_{in}$ = 1.5 GHz	220 200	350 300		220 200	350 300		220 200	350 300		mV
f _{DATA}	Maximum Operating Data Rate	1.5	2.5		1.5	2.5		1.5	2.5		Gb/s
t _{PLH} , t _{PHL}	Differential Input to Differential Output Propagation Delay	270	370	470	270	370	470	270	370	470	ps
t _{SKEW}	Duty Cycle Skew (Note 11) Within Device Skew (Note 17) Device-to-Device Skew (Note 15)		8 5 30	45 25 100		8 5 30	45 25 100		8 5 30	45 25 100	ps
t _{uitter}	$\begin{array}{ll} \text{RMS Random Clock Jitter (Note 13)} & f_{in} = 1.0 \text{ GHz} \\ f_{in} = 1.5 \text{ GHz} \\ \text{Deterministic Jitter (Note 14)} & f_{DATA} = 622 \text{ Mb/s} \\ f_{DATA} = 1.5 \text{ Gb/s} \\ f_{DATA} = 2.488 \text{ Gb/s} \\ \text{Crosstalk Induced Jitter (Note 16)} \end{array}$		0.5 0.5 6 7 10 20	1 1 20 20 25 40		0.5 0.5 6 7 10 20	1 1 20 20 25 40		0.5 0.5 6 7 10 20	1 1 20 20 25 40	ps
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 12)	100		V _{CC} - GND	100		V _{CC} - GND	100		V _{CC} - GND	mV
t _r t _f	Output Rise/Fall Times @ 250 MHz Q, Q (20% - 80%)	60	100	140	60	100	140	60	100	140	ps

Table 5. AC CHARACTERISTICS V_{CC} = 3.0 V to 3.6 V, GND = 0 V; (Note 10)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

10. Measured by forcing $V_{INPPmin}$ with 50% duty cycle clock source and V_{CC} – 1400 mV offset. All loading with an external R_L = 100 Ω across "D" and "D" of the receiver. Input edge rates 150 ps (20%–80%).

11. See Figure 13 differential measurement of t_{skew} = |t_{PLH} - t_{PHL}| for a nominal 50% differential clock input waveform @ 250 MHz.

12. Input voltage swing is a single-ended measurement operating in differential mode.

13. RMS jitter with 50% duty cycle input clock signal.

14. Deterministic jitter with input NRZ data at PRBS 2²³-1 and K28.5.

15. Skew is measured between outputs under identical transition @ 250 MHz.

16. Crosstalk induced jitter is the additive deterministic jitter to channel one with channel two active both running at 622 Gb/s PRBS 2²³ –1 as an asynchronous signals.

17. The worst case condition between Q0/Q0 and Q1/Q1 from either D0/D0 or D1/D1, when both outputs have the same transition.

Figure 5. Typical Output Waveform at 2.488 Gb/s with PRBS 2^{23-1} and OC48 mask (V_{INPP} = 100 mV; Input Signal DDJ = 14 ps)

Figure 6. Input Structure

Figure 7. LVPECL Interface

Figure 8. LVDS Interface

Figure 9. Standard 50 Ω Load CML Interface

Figure 11. LVCMOS Interface

Figure 10. HSTL Interface

*R $_{\text{TIN}}$, Internal Input Termination Resistor.

Figure 14. Typical LVDS Termination for Output Driver and Device Evaluation

Figure 16. Differential Input Driven Single-Ended

Figure 17. Differential Inputs Driven Differentially

Figure 18. V_{th} Diagram

Figure 19. V_{CMR} Diagram

ORDERING INFORMATION

Device	Package	Shipping [†]
NB4N527SMNG	QFN-16 (Pb-Free)	123 Units / Rail
NB4N527SMNR2G	QFN-16 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

onsemi

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, OnSemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters, including "Typicals" must be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Drivers & Distribution category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0
CDCVF2505IDRQ1 NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C EC4P-221-MRXD1
6EP1332-1SH71 6ES7211-1AE40-0XB0 6ES7223-1PH32-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ
AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7
AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B
HMC6832ALP5LE CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805EQGI 49FCT805CTQG 74FCT3807ASOG
74FCT3807EQGI 74FCT388915TEPYG 853S012AKILF 853S013AMILF 853S058AGILF 8V79S680NLGI ISPPAC-CLK5312S-01TN48I