NB6L11M

2.5V / 3.3V 1:2 Differential CML Fanout Buffer

Multi-Level Inputs w/ Internal Termination

Description

The NB6L11M is a differential 1:2 CML fanout buffer. The differential inputs incorporate internal 50Ω termination resistors that are accessed through the V_{T} pins and will accept LVPECL, LVCMOS, LVTTL, CML, or LVDS logic levels.

The $V_{\text {REFAC }}$ pin is an internally generated voltage supply available to this device only. $V_{\text {REFAC }}$ is used as a reference voltage for single-ended PECL or NECL inputs. For all single-ended input conditions, the unused complementary differential input is connected to $\mathrm{V}_{\text {REFAC }}$ as a switching reference voltage. $\mathrm{V}_{\text {REFAC }}$ may also rebias capacitor-coupled inputs. When used, decouple V REFAC with a $0.01 \mu \mathrm{~F}$ capacitor and limit current sourcing or sinking to 0.5 mA . When not used, V REFAC output should be left open.

The device is housed in a small $3 \times 3 \mathrm{~mm} 16$ pin QFN package.
The NB6L11M is a member of the ECLinPS MAX ${ }^{\text {TM }}$ family of high performance clock products.

Features

- Maximum Input Clock Frequency $>4 \mathrm{GHz}$, Typical
- 225 ps Typical Propagation Delay
- 70 ps Typical Rise and Fall Times
- 0.5 ps maximum RMS Clock Jitter
- Differential CML Outputs, 380 mV peak-to-peak, typical
- LVPECL Operating Range: $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 3.63 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
- NECL Operating Range: $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{EE}}=-2.375 \mathrm{~V}$ to -3.63 V
- Internal Input Termination Resistors, 50Ω
- VREFAC Reference Output
- Functionally Compatible with Existing 2.5 V / 3.3V LVEL, LVEP, EP, and SG Devices
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Ambient Operating Temperature
- These are $\mathrm{Pb}-$ Free Devices

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

$\longleftarrow \mathrm{V}_{\text {REFAC }}$

Figure 1. Simplified Logic Diagram

[^0]

Figure 2. Pin Configuration (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Description
1	VTD	-	Internal 50Ω Termination Pin for D input.
2	D	ECL, CML, LVCMOS, LVDS, LVTTL Input	Noninverted Differential Input. Note 1. Internal 50Ω Resistor to Termination Pin, VTD.
3	D	ECL, CML, LVCMOS, LVDS, LVTTL Input	Inverted Differential Input. Note 1. Internal 50Ω Resistor to Termination Pin, VTD.
4	VTD	-	Internal 50Ω Termination Pin for $\overline{\mathrm{D}}$ input.
5	V_{CC}	-	Positive Supply Voltage
6	$\mathrm{V}_{\text {REFAC }}$		Output Reference Voltage for direct or capacitor coupled inputs
7	V_{EE}	-	Negative Supply Voltage
8	V_{CC}	-	Positive Supply Voltage
9	Q1	CML Output	Inverted Differential Output. Typically Terminated with 50Ω Resistor to V_{CC}.
10	Q1	CML Output	Noninverted Differential Output. Typically Terminated with 50Ω Resistor to V_{Cc}.
11	Q0	CML Output	Inverted Differential Output. Typically Terminated with 50Ω Resistor to V_{CC}.
12	Q0	CML Output	Noninverted Differential Output. Typically Terminated with 50Ω Resistor to V_{Cc}.
13	V_{CC}	-	Positive Supply Voltage
14	V_{EE}	-	Negative Supply Voltage
15	V_{EE}	-	Negative Supply Voltage
16	V_{CC}	-	Positive Supply Voltage
-	EP	-	The Exposed Pad (EP) on the QFN-16 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is not electrically connected to the die, but is recommended to be electrically and thermally connected to VEE on the PC board.

1. In the differential configuration when the input termination pins (VTD, VTD) are connected to a common termination voltage or left open, and if no signal is applied on D / D input, then, the device will be susceptible to self-oscillation.
2. All V_{CC} and V_{EE} pins must be externally connected to a power supply for proper operation.

Table 2. ATTRIBUTES

Characteristics		Value
ESD Protection	Human Body Model Machine Model	$\begin{gathered} >2 \mathrm{kV} \\ >200 \mathrm{~V} \end{gathered}$
Moisture Sensitivity	16-QFN	Level 1
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count		
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test		

For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit	
$\mathrm{V}_{\text {CC }}$	Positive Power Supply	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		4.0	V	
V_{EE}	Negative Power Supply	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		-4.0	V	
V_{10}	Positive Input/Output Voltage Negative Input/Output Voltage	$\begin{aligned} & V_{E E}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -0.5 \leq \mathrm{V}_{\mathrm{lO}} \leq \mathrm{V}_{\mathrm{CC}}+0.5 \\ & +0.5 \leq \mathrm{V}_{\mathrm{lO}} \leq \mathrm{V}_{\mathrm{EE}}-0.5 \end{aligned}$	$\begin{gathered} 4.0 \\ -4.0 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
$\mathrm{V}_{\text {INPP }}$	Differential Input Voltage \|D - D				$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {EE }}$	V
IN	Input Current Through $\mathrm{R}_{\mathrm{T}}(50 \Omega$ Resistor)	Static Surge		$\begin{aligned} & 45 \\ & 80 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
Iout	Output Current (CML Output)	Continuous Surge		$\begin{aligned} & 25 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
IVREFAC	VREFAC Sink/Source Current			± 0.5	mA	
T_{A}	Operating Temperature Range	16 QFN		-40 to +85	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$	
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient) (Note 3)	0 lfmp 500 Ifmp	$\begin{aligned} & \hline \text { QFN-16 } \\ & \text { QFN-16 } \end{aligned}$	$\begin{aligned} & 42 \\ & 35 \end{aligned}$	$\begin{aligned} & \hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	(Note 3)	QFN-16	4	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
$\mathrm{T}_{\text {sol }}$	Wave Solder Pb-Free			265	${ }^{\circ} \mathrm{C}$	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
3. JEDEC standard multilayer board - 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 4. DC CHARACTERISTICS, Multi-Level Inputs $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to $3.63 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$, or $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.375 \mathrm{~V}$ to $-3.63 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Characteristic | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | | POWER SUPPLY CURRENT | 45 | 60 | 75 | mA |
| :--- | :--- | :--- | :--- | :--- |

CML OUTPUTS (Notes 4 and 5)

V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-40 \\ 3260 \\ 2460 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-10 \\ 3290 \\ 2490 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & 3300 \\ & 2500 \end{aligned}$	mV
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{\mathrm{CC}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}-500 \\ 2800 \\ 2000 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-400 \\ 2900 \\ 2100 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-300 \\ 3000 \\ 2200 \end{gathered}$	mV

DIFFERENTIAL INPUT DRIVEN SINGLE-ENDED (see Figures 4 and 5) (Note 6)

$\mathrm{V}_{\text {th }}$	Input Threshold Reference Voltage Range (Note 7)	1125		$\mathrm{~V}_{\mathrm{CC}}-75$	mV
$\mathrm{V}_{\text {IH }}$	Single-ended Input HIGH Voltage	$\mathrm{V}_{\text {th }}+75$		$\mathrm{~V}_{\mathrm{CC}}$	mV
V_{IL}	Single-ended Input LOW Voltage	$\mathrm{V}_{\text {EE }}$		$\mathrm{V}_{\text {th }}-75$	mV
$\mathrm{V}_{\text {ISE }}$	Single-ended Input Voltage Amplitude $\left(\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\mathrm{IL}}\right)$	150		2800	mV

VREFAC

$V_{\text {REFAC }}$	Output Reference Voltage $\left(\mathrm{V}_{\mathrm{CC}} \geq 2.5 \mathrm{~V}\right)$	$\mathrm{V}_{\mathrm{CC}}-1525$	$\mathrm{~V}_{\mathrm{CC}}-1425$	$\mathrm{~V}_{\mathrm{CC}}-1325$	mV

DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (see Figures 6, 7 and 8) (Note 8)

$\mathrm{V}_{\mathrm{IHD}}$	Differential Input HIGH Voltage	$\mathrm{V}_{\mathrm{EE}}+1200$		$\mathrm{~V}_{\mathrm{CC}}$	mV
$\mathrm{V}_{\mathrm{ILD}}$	Differential Input LOW Voltage	V_{EE}		$\mathrm{V}_{\mathrm{CC}}-100$	mV
V_{ID}	Differential Input Voltage ($\left.\mathrm{V}_{\mathrm{IHD}}-\mathrm{V}_{\mathrm{ILD}}\right)$	$\mathrm{V}_{\mathrm{EE}}+100$		$\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	mV
$\mathrm{V}_{\mathrm{CMR}}$	Input Common Mode Range (Differential Configuration) (Note 9)	$\mathrm{V}_{\mathrm{EE}}+950$		$\mathrm{~V}_{\mathrm{CC}}-50$	mV
I_{IH}	Input HIGH Current D / $\overline{\mathrm{D}}$, (VTD/VTD Open)	-150		150	uA
I_{IL}	Input LOW Current D / D, (VTD/VTD Open)	-150		150	uA

TERMINATION RESISTORS

$\mathrm{R}_{\text {TIN }}$	Internal Input Termination Resistor	40	50	60	Ω
$\mathrm{R}_{\text {TOUT }}$	Internal Output Termination Resistor	40	50	60	Ω

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
4. CML outputs loaded with 50Ω to $V_{\text {CC }}$ for proper operation.
5. Input and output parameters vary $1: 1$ with V_{CC}.
6. $\mathrm{V}_{\mathrm{th}}, \mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$, and $\mathrm{V}_{\text {ISE }}$ parameters must be complied with simultaneously.
7. $V_{\text {th }}$ is applied to the complementary input when operating in single-ended mode.
8. $\mathrm{V}_{I H D}, \mathrm{~V}_{I L D}, \mathrm{~V}_{I D}$ and $\mathrm{V}_{\mathrm{CMR}}$ parameters must be complied with simultaneously.
9. $\mathrm{V}_{\mathrm{CMR}}$ min varies $1: 1$ with $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{CMR}}$ maximum varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\mathrm{CMR}}$ range is referenced to the most positive side of the differential input signal.

NB6L11M

Table 5. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to $3.63 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$, or $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.375 \mathrm{~V}$ to $-3.63 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; (Note 10)

Symbol	Characteristic		Min	Typ	Max	Unit
V ${ }_{\text {OUTPP }}$	Output Voltage Amplitude (@ $\mathrm{V}_{\text {INPP(MIN) }}$ (Note 15) (See Figure 9)	$\begin{array}{r} \mathrm{f}_{\text {fin }} \leq 3.0 \mathrm{GHz} \\ f_{\text {in }} \leq 3.5 \mathrm{GHz} \\ \mathrm{f}_{\text {in }} \leq 4.0 \mathrm{GHz} \end{array}$	$\begin{aligned} & \hline 230 \\ & 190 \\ & 150 \end{aligned}$	$\begin{aligned} & 380 \\ & 320 \\ & 270 \end{aligned}$		mV
$\mathrm{t}_{\text {PD }}$	Propagation Delay	D to Q	175	225	325	ps
$\mathrm{t}_{\text {SKEW }}$	Duty Cycle Skew (Note 11) Within Device Skew Device to Device Skew (Note 12)			$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 80 \end{aligned}$	ps
$t_{\text {DC }}$	Output Clock Duty Cycle (Reference Duty Cycle = 50\%)	$\mathrm{f}_{\text {in }} \leq 4.0 \mathrm{GHz}$	40	50	60	\%
$\mathrm{t}_{\text {JITTER }}$	RMS Random Clock Jitter (Note 13) Peak-to-Peak Data Dependent Jitter (Note 14)	$\begin{aligned} & \mathrm{f}_{\text {in }} \leq 4 \mathrm{GHz} \\ & \mathrm{f}_{\text {in }} \leq 4 \mathrm{~Gb} / \mathrm{s} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 40 \end{aligned}$	0.5	ps
$\mathrm{V}_{\text {INPP }}$	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 15)		150		2800	mV
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	$\begin{aligned} & \text { Output Rise/Fall Times @ } 0.5 \mathrm{GHz} \\ & (20 \%-80 \%) \end{aligned}$	Q, \bar{Q}		70	120	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
10. Measured by forcing $\mathrm{V}_{\text {INPP }}(\mathrm{MIN})$ from a 50% duty cycle clock source. All loading with an external $\mathrm{R}_{\mathrm{L}}=50 \Omega$ to V_{CC}. Input edge rates 40 ps ($20 \%-80 \%$).
11. Duty cycle skew is measured between differential outputs using the deviations of the sum of Tpw- and Tpw+ @ 0.5 GHz .
12. Device to device skew is measured between outputs under identical transition @ 0.5 GHz .
13. Additive RMS jitter with 50% duty cycle clock signal.
14. Additive peak-to-peak data dependent jitter with input NRZ data at PRBS23.
15. Input and output voltage swing is a single-ended measurement operating in differential mode.

NB6L11M

Figure 3. Input Structure

Figure 4. Differential Input Driven Single-Ended

Figure 5. $\mathrm{V}_{\text {th }}$ Diagram

Figure 6. Differential Inputs Driven Differentially

Figure 7. Differential Inputs Driven Differentially

Figure 8. $\mathrm{V}_{\mathrm{CMR}}$ Diagram

Figure 9. AC Reference Measurement

Figure 10. LVPECL Interface

Figure 11. LVDS Interface

Figure 12. Standard 50Ω Load CML Interface

Figure 13. Capacitor-Coupled Differential Interface ($\mathrm{V}_{\mathrm{TD}} / \mathrm{V}_{\mathrm{TD}}$ Connected to $\mathrm{V}_{\text {REFAC }}$; $\mathrm{V}_{\text {REFAC }}$ Bypassed to Ground with $0.1 \mu \mathrm{~F}$ Capacitor)

Figure 14. Capacitor-Coupled Single-Ended Interface ($\mathrm{V}_{\mathrm{T}} / \mathrm{V}_{\mathrm{T}}$ Connected to $\mathrm{V}_{\text {REFAC }}$; $\mathrm{V}_{\text {REFAC }}$ Bypassed to Ground with $0.1 \mu \mathrm{~F}$ Capacitor)

Figure 15. Output Voltage Amplitude (VOUTPP) versus Output Frequency at Ambient Temperature (Typical)

Figure 16. CML Output Structure

Figure 17. Typical CML Termination for Output Driver and Device Evaluation

ORDERING INFORMATION

Device	Package	Shipping †
NB6L11MMNG	QFN-16 (Pb-Free)	123 Units / Rail
	(Pb-Free)	$3000 /$ Tape \& Reel

[^1]

QFN16 3x3, 0.5P
CASE 485G
ISSUE G
SCALE 2:1

SIDE VIEW

battam View

NDTES:

1. DIMENSIONING AND TQLERANCING PER ASME Y14.5M, 1994.
2. CDNTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIDN 6 APPLIES TD PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FRDM THE TERMINAL TIP.
4. CIPLANARITY APPLIES TD THE EXPISED PAD AS WELL AS. THE TERMINALS.

DETAIL B
ALTERNATE
CINSTRUCTIONS

DETAIL A
ALTERNATE TERMINAL CONSTRUCTIINS

DIM	MILLIMETERS				
	MIN.	NDM.	MAX.		
A	0.80	0.90	1.00		
A1	0.00	0.03	0.05		
A3	0.20 REF				
b	0.18	0.24			
D	3.00 BSC				
D2	1.65	1.75			1.85
E	3.00 BSC				
E2	1.65	1.75	1.85		
e	0.50 BSC				
K	0.18 TYP				
L	0.30	0.40	0.50		
L1	0.00	0.08	0.15		

GENERIC MARKING DIAGRAM*
${ }^{\circ} \mathrm{XXXXX}$
XXXXX
ALYW.
-
XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " \cdot ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON04795D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	QFN16 3X3, 0.5P	PAGE 10

[^2]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK854BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7 ADCLK905BCPZ-WP

[^0]: ORDERING INFORMATION
 See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

[^1]: \dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

[^2]: onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

