### 2.5 V/3.3 V 3.0 GHz Differential 1:4 LVPECL Fanout Buffer

## Multi-Level Inputs with Internal Termination

## Description

The NB6L14 is a 3.0 GHz differential 1:4 LVPECL clock or data fanout buffer. The differential inputs incorporate internal $50 \Omega$ termination resistors that are accessed through the VT pin. This feature allows the NB6L14 to accept various logic standards, such as LVPECL, LVCMOS, LVTTL, CML, or LVDS logic levels. The VREF_AC reference output can be used to rebias capacitor-coupled differential or single-ended input signals. The 1:4 fanout design was optimized for low output skew applications.

The NB6L14 is a member of the ECLinPS MAX ${ }^{\text {TM }}$ family of high performance clock and data management products.

## Features

- Input Clock Frequency $>3.0 \mathrm{GHz}$
- Input Data Rate $>2.5 \mathrm{~Gb} / \mathrm{s}$
- $<20$ ps Within Device Output Skew
- 350 ps Typical Propagation Delay
- 150 ps Typical Rise and Fall Times
- Differential LVPECL Outputs, 700 mV Amplitude, Typical
- LVPECL Mode Operating Range: $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 3.63 V with GND $=0 \mathrm{~V}$
- Internal $50 \Omega$ Input Termination Resistors Provided
- VREF_AC Reference Output Voltage
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Ambient Operating Temperature
- Available in $3 \mathrm{~mm} \times 3 \mathrm{~mm} 16$ Pin QFN
- These are $\mathrm{Pb}-$ Free Devices

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com


Figure 1. Simplified Logic Diagram

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.


Figure 2. QFN-16 Pinout
(Top View)


Figure 3. Logic Diagram

Table 1. EN TRUTH TABLE

| IN | IN | EN | Q0:Q3 | Q0:Q3 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| $x$ | $x$ | 0 | $0+$ | $1+$ |

$+=$ On next negative transition of the input signal (IN).
$x=$ Don't care.
Table 2. PIN DESCRIPTION

| Pin | Name | I/O | Description |
| :---: | :---: | :---: | :---: |
| 1 | Q1 | LVPECL Output | Non-inverted Differential Output. Typically Terminated with $50 \Omega$ Resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$. |
| 2 | Q1 | LVPECL Output | Inverted Differential Output. Typically Terminated with $50 \Omega$ Resistor to $\mathrm{V}_{\mathrm{Cc}}-2.0 \mathrm{~V}$. |
| 3 | Q2 | LVPECL Output | Non-inverted Differential Output. Typically Terminated with $50 \Omega$ Resistor to $V_{C C}-2.0 \mathrm{~V}$. |
| 4 | Q2 | LVPECL Output | Inverted Differential Output. Typically Terminated with $50 \Omega$ Resistor to $\mathrm{V}_{\mathrm{Cc}}-2.0 \mathrm{~V}$. |
| 5 | Q3 | LVPECL Output | Non-inverted Differential Output. Typically Terminated with $50 \Omega$ Resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$. |
| 6 | Q3 | LVPECL Output | Inverted Differential Output. Typically Terminated with $50 \Omega$ Resistor to $\mathrm{V}_{\mathrm{Cc}}-2.0 \mathrm{~V}$. |
| 7 | $\mathrm{V}_{\mathrm{CC}}$ | - | Positive Supply Voltage |
| 8 | EN | LVTTL/LVCMOS | Synchronous Output Enable. When LOW, Q outputs will go LOW and Q outputs will go HIGH on the next negative transition of IN input. The internal DFF register is clocked on the falling edge of IN input (see Figure 20). The EN pin has an internal pullup resistor and defaults HIGH when left open. |
| 9 | $\overline{\mathrm{IN}}$ | LVPECL, CML, LVDS, HSTL | Inverted Differential Clock Input. Internal $50 \Omega$ Resistor to Termination Pin, VT. |
| 10 | VREF_AC |  | Output Voltage Reference for capacitor-coupled inputs, only. |
| 11 | VT |  | Internal $100 \Omega$ center-tapped Termination Pin for IN and $\overline{\mathrm{IN}}$. |
| 12 | IN | LVPECL, CML, LVDS, HSTL | Non-inverted Differential Clock Input. Internal $50 \Omega$ Resistor to Termination Pin, VT. |
| 13 | GND | - | Negative Supply Voltage |
| 14 | $\mathrm{V}_{\mathrm{CC}}$ | - | Positive Supply Voltage |
| 15 | Q0 | LVPECL Output | Noninverted Differential Output. Typically Terminated with $50 \Omega$ Resistor to $\mathrm{V}_{\mathrm{C}}-2.0 \mathrm{~V}$. |
| 16 | Q0 | LVPECL Output | Inverted Differential Output. Typically Terminated with $50 \Omega$ Resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$. |
| - | EP | - | The Exposed Pad (EP) on the QFN-16 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is not electrically connected to the die, but is recommended to be electrically and thermally connected to GND on the PC board. |

1. In the differential configuration when the input termination pin $V T$, is connected to a common termination voltage or left open, and if no signal is applied on IN/IN inputs, then the device will be susceptible to self-oscillation.

Table 3. ATTRIBUTES

| Characteristics | Value |  |
| :--- | ---: | ---: |
| ESD Protection | Human Body Model <br> Machine Model | $>4 \mathrm{kV}$ <br> $>100 \mathrm{~V}$ |
| Moisture Sensitivity (Note 2) | QFN-16 | Level 1 |
| Flammability Rating | Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in |
| Transistor Count | 167 |  |
| Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test |  |  |

2. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

| Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Positive Power Supply | GND $=0 \mathrm{~V}$ |  | 4.0 | V |
| $\mathrm{V}_{10}$ | Positive Input/Output | GND $=0 \mathrm{~V}$ | $-0.5 \mathrm{~V} \leq \mathrm{V}_{10} \leq \mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ | 4.0 | V |
| $\mathrm{I}_{\mathrm{N}}$ | Input Current Source or Sink Current (IN/IN) |  |  | $\pm 50$ | mA |
| IVREF_AC | Source or Sink Current on VT Pin |  |  | $\pm 2.0$ | mA |
| Iout | Output Current | Continuous Surge |  | $\begin{gathered} 50 \\ 100 \end{gathered}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| $\mathrm{T}_{\mathrm{A}}$ | Operating Temperature Range |  |  | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {stg }}$ | Storage Temperature Range |  |  | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\theta_{\text {JA }}$ | Thermal Resistance (Junction-to-Ambient) (Note 3) | $\begin{aligned} & \hline 0 \text { lfpm } \\ & 500 \text { lfpm } \end{aligned}$ | $\begin{aligned} & \text { QFN-16 } \\ & \text { QFN-16 } \end{aligned}$ | $\begin{aligned} & 42 \\ & 35 \end{aligned}$ | $\begin{aligned} & \hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$ |
| $\theta_{\mathrm{Jc}}$ | Thermal Resistance (Junction-to-Case) | (Note 3) | QFN-16 | 4 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{T}_{\text {sol }}$ | Wave Solder Pb-Free |  |  | 265 | ${ }^{\circ} \mathrm{C}$ |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
3. JEDEC standard multilayer board - 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 5. DC CHARACTERISTICS, Multi-Level Inputs, LVPECL Outputs
$\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to $3.63 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Characteristic | Min | Typ | Max | Unit |
| :--- | :--- | :---: | :---: | :---: | :---: |
| ICC | Power Supply Current (Inputs and Outputs Open) | 35 | 47 | 65 | mA |

LVPECL OUTPUT DC ELECTRICAL CHARACTERISTICS

| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage (Notes 4 and 5) (Q, $\overline{\mathrm{Q}})$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}-1145 \\ 2155 \\ 1355 \end{gathered}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}-1020 \\ 2280 \\ 1480 \end{gathered}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}-895 \\ 2405 \\ 1605 \end{gathered}$ | mV |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OL }}$ | Output LOW Voltage (Notes 4 and 5) (Q, $\overline{\mathrm{Q}}) \quad \begin{aligned} & \\ & \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}\end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}-1945 \\ 1355 \\ 555 \end{gathered}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}-1875 \\ 1475 \\ 675 \end{gathered}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}-1695 \\ 1605 \\ 805 \end{gathered}$ | mV |

DIFFERENTIAL INPUT DRIVEN SINGLE-ENDED (See Figures 10 and 11)

| $\mathrm{V}_{\text {th }}$ | Input Threshold Reference Voltage Range (Note 6) | 1100 |  | $\mathrm{~V}_{\mathrm{CC}}-100$ | mV |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IH}}$ | Single-Ended Input High Voltage | $\mathrm{V}_{\text {th }}+100$ |  | $\mathrm{~V}_{\mathrm{CC}}$ | mV |
| $\mathrm{V}_{\mathrm{IL}}$ | Single-Ended Input LOW Voltage | GND |  | $\mathrm{V}_{\text {th }}-100$ | mV |
| $\mathrm{V}_{\text {ISE }}$ | Single-Ended Input Voltage Amplitude $\left(\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\mathrm{IL}}\right)$ | 200 |  | $\mathrm{~V}_{\mathrm{CC}}-\mathrm{GND}$ | mV |

$V_{\text {REFAC }}$

| $\mathrm{V}_{\text {REFAC }}$ | Output Reference Voltage $\left(\mathrm{V}_{\mathrm{CC}} \geq 2.5 \mathrm{~V}\right)$ | $\mathrm{V}_{\mathrm{CC}}-1.525$ | $\mathrm{~V}_{\mathrm{CC}}-1.425$ | $\mathrm{~V}_{\mathrm{CC}}-1.325$ | mV |
| :--- | :--- | :--- | :--- | :--- | :---: |

DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (See Figures 12 and 13) (Note 7)


## LVTTL/LVCMOS INPUT DC ELECTRICAL CHARACTERISTICS

| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | 2.0 |  | $\mathrm{~V}_{\mathrm{CC}}$ | V |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IL}}$ | Input LOW Voltage | GND |  | 0.8 | V |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{IN}}=3.63 \mathrm{~V}$ | -10 |  | 50 | $\mu \mathrm{~A}$ |
| $\mathrm{I}_{\mathrm{IL}}$ | Input LOW Current, $\mathrm{V}_{\mathrm{CC}}=3.63 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ | -150 |  | 0 | $\mu \mathrm{~A}$ |

TERMINATION RESISTORS

| $R_{\text {TIN }}$ | Internal Input Termination Resistor (IN to VT) | 40 | 50 | 60 | $\Omega$ |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $R_{\text {DIFF_IN }}$ | Differential Input Resistance (IN to IN) | 80 | 100 | 120 | $\Omega$ |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
4. LVPECL outputs loaded with $50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$ for proper operation.
5. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$.
6. $V_{\text {th }}$ is applied to the complementary input when operating in single-ended mode.
7. $\mathrm{V}_{I H D}, \mathrm{~V}_{I L D}, \mathrm{~V}_{I D}$ and $\mathrm{V}_{\mathrm{CMR}}$ parameters must be complied with simultaneously.
8. $\mathrm{V}_{\mathrm{CMR}}$ min varies $1: 1$ with $\mathrm{GND}, \mathrm{V}_{\mathrm{CMR}}$ max varies $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$. The $\mathrm{V}_{\mathrm{CMR}}$ range is referenced to the most positive side of the differential input signal.

Table 6. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to $3.63 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 9)

| Symbol | Characteristic | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OUTPP }}$ | $\begin{array}{\|r\|} \left.\hline \text { Output Voltage Amplitude (@ } V_{\text {INPPmin }}\right)\left(\begin{array}{l} \text { Note } 10) \\ f_{\text {IN }} \leq 1.25 ~ G H z \\ 1.25 \mathrm{GHz} \leq f_{\text {in }} \leq 2.0 \mathrm{GHz} \\ 2.0 \mathrm{GHz} \leq f_{\text {in }} \leq 3.0 \mathrm{GHz} \end{array}\right. \end{array}$ | $\begin{aligned} & 550 \\ & 380 \\ & 250 \end{aligned}$ | $\begin{aligned} & 700 \\ & 500 \\ & 300 \end{aligned}$ |  | mV |
| $\mathrm{f}_{\text {DATA }}$ | Maximum Operating Data Rate |  | 2.5 |  | Gb/s |
| $t_{\text {PD }}$ | Propagation Delay IN to Q | 250 | 370 | 500 | ps |
| $\mathrm{t}_{\mathrm{s}}$ | Set-Up Time (Note 11) EN to IN, IN | 300 |  |  | ps |
| $\mathrm{t}_{\mathrm{H}}$ | Hold Time (Note 11) EN to IN, IN | 300 |  |  | ps |
| tskew | Within-Device Skew (Note 12) Device to Device Skew (Note 13) |  | 5.0 | $\begin{gathered} 20 \\ 150 \end{gathered}$ | ps |
| $\mathrm{t}_{\text {IITTER }}$ | RMS Random Jitter (Note 14)  <br> Peak-to-Peak Data Dependent Jitter <br> (Note 15) $f_{\text {IN }}=2.5 \mathrm{GHz}$ <br> $\mathrm{f}_{\text {DATA }}=2.5 \mathrm{~Gb} / \mathrm{s}$  |  | 14 | 1.0 | ps |
| $\mathrm{V}_{\text {INPP }}$ | Input Voltage Swing/Sensitivity (Differential Configuration) (Note 10) | 100 |  | $\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$ | mV |
| $\mathrm{t}_{\mathrm{r}, \mathrm{t}}$ | Output Rise/Fall Times @ Full Output Swing (20\%-80\%) | 70 | 150 | 200 | ps |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
9. Measured by forcing $\mathrm{V}_{\mathrm{INPP}}(\mathrm{min})$ from a $50 \%$ duty cycle clock source. All loading with an external $\mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$. Input edge rates 40 ps ( $20 \%-80 \%$ ).
10. Input and output voltage swing is a single-ended measurement operating in differential mode.
11. Set-up and hold times apply to synchronous applications that intend to enable/disable before the next clock cycle. For asynchronous applications, set-up and hold times do not apply.
12. Within device skew is measured between two different outputs under identical power supply, temperature and input conditions.
13. Device to device skew is measured between outputs under identical transition @ 0.5 GHz .
14. Additive RMS jitter with $50 \%$ duty cycle clock signal.
15. Additive peak-to-peak data dependent jitter with input NRZ data at PRBS $2^{\wedge} 23-1$ and K28.5 at $2.5 \mathrm{~Gb} / \mathrm{s}$.


Figure 4. Output Voltage Amplitude (Voutpp) versus Output Frequency at Ambient Temperature (Typical)


Figure 5. Typical Phase Noise Plot at $f_{\text {carrier }}=\mathbf{3 1 1 . 0 4} \mathbf{~ M H z}$


Figure 7. Typical Phase Noise Plot at $\mathrm{f}_{\text {carrier }}=\mathbf{1 \mathrm { GHz }}$

The above phase noise plots captured using Agilent E5052A show additive phase noise of the NB6L14 device at frequencies $311.04 \mathrm{MHz}, 622.08 \mathrm{MHz}, 1 \mathrm{GHz}$ and 2 GHz respectively at an operating voltage of 3.3 V in room temperature. The RMS Phase Jitter contributed by the


Figure 6. Typical Phase Noise Plot at $\mathrm{f}_{\text {carrier }}=\mathbf{6 2 2 . 0 8} \mathrm{MHz}$


Figure 8. Typical Phase Noise Plot at $\mathbf{f}_{\text {carrier }}=\mathbf{2 ~ G H z}$
device (integrated between 12 kHz and 20 MHz ; as shown in the shaded region of the plot) at each of the frequencies is $27 \mathrm{fs}, 17 \mathrm{fs}, 13 \mathrm{fs}$ and 5 fs respectively. The input source used for the phase noise measurements is Agilent E8663B.


Figure 9. Input Structure


Figure 10. Differential Input Driven Single-Ended


Figure 11. $\mathrm{V}_{\text {th }}$ Diagram


Figure 12. Differential Inputs Driven Differentially


Figure 13. $\mathrm{V}_{\mathrm{CMR}}$ Diagram


Figure 14. AC Reference Measurement


Figure 15. LVPECL Interface


Figure 17. Standard $50 \Omega$ Load CML Interface



Figure 20. EN Timing Diagram


Figure 21. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)

ORDERING INFORMATION

| Device | Package | Shipping $^{\dagger}$ |
| :--- | :---: | :---: |
| NB6L14MNG | QFN-16,3×3 mm <br> (Pb-Free) | 123 Units / Rail |
| NB6L14MNR2G | QFN-16, 3×3 mm <br> (Pb-Free) | $3000 /$ Tape \& Reel |

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


QFN16 3x3, 0.5P
CASE 485G
ISSUE G
SCALE 2:1


SIDE VIEW

battam View

NDTES:

1. DIMENSIONING AND TQLERANCING PER ASME Y14.5M, 1994.
2. CDNTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIDN 6 APPLIES TD PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FRDM THE TERMINAL TIP.
4. CIPLANARITY APPLIES TD THE EXPISED PAD AS WELL AS. THE TERMINALS.


DETAIL B
ALTERNATE
CINSTRUCTIONS


DETAIL A
ALTERNATE TERMINAL CONSTRUCTIINS

| DIM | MILLIMETERS |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: |
|  | MIN. | NDM. | MAX. |  |  |
| A | 0.80 | 0.90 | 1.00 |  |  |
| A1 | 0.00 | 0.03 | 0.05 |  |  |
| A3 | 0.20 REF |  |  |  |  |
| b | 0.18 | 0.24 |  |  |  |
| D | 3.00 BSC |  |  |  |  |
| D2 | 1.65 | 1.75 |  |  | 1.85 |
| E | 3.00 BSC |  |  |  |  |
| E2 | 1.65 | 1.75 | 1.85 |  |  |
| e | 0.50 BSC |  |  |  |  |
| K | 0.18 TYP |  |  |  |  |
| L | 0.30 | 0.40 | 0.50 |  |  |
| L1 | 0.00 | 0.08 | 0.15 |  |  |

GENERIC MARKING DIAGRAM*
${ }^{\circ} \mathrm{XXXXX}$
XXXXX
ALYW.
-
XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\cdot$ ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON04795D | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| :---: | :---: | :---: |
| DESCRIPTION: | QFN16 3X3, 0.5P | PAGE 10 |

[^0]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB3N2304NZDTR2G NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7


[^0]:    onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

