NB6L56

2.5V / 3.3V Dual 2:1 Differential Clock / Data Multiplexer with LVPECL Outputs

Multi-Level Inputs w/ Internal Termination

The NB6L56 is a high performance Dual 2-to-1 Differential Clock or Data multiplexer. The differential inputs incorporate internal 50Ω termination resistors that are accessed through the VT pin. This feature allows the NB6L56 to accept various Differential logic level standards, such as LVPECL, CML or LVDS. Outputs are 800 mV LVPECL signals. For interface options see Figures 12-15.

The NB6L56 produces minimal Clock or Data jitter operating up to 2.5 GHz or 2.5 Gbps, respectively. As such, the NB6L56 is ideal for SONET, GigE, Fiber Channel, Backplane and other Clock/Data distribution applications.

The NB6L56 is offered in a low profile $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ 32-pin QFN package and is a member of the ECLinPS MAX ${ }^{\mathrm{TM}}$ family of high performance Clock / Data products. Application notes, models, and support documentation are available at www.onsemi.com.

Features

- Maximum Input Data Rate $>2.5 \mathrm{Gbps}$
- Maximum Input Clock Frequency $>2.5 \mathrm{GHz}$
- Jitter
$<1 \mathrm{ps}$ RMS RJ (Data)
$<10 \mathrm{ps}$ PP DJ (Data)
<0.7 ps RMS Crosstalk induced jitter (CLOCK)
- 360 ps Max Propagation Delay
- 180 ps Max Rise and Fall Times
- Operating Range:
$\mathrm{V}_{\mathrm{CC}}=2.5 \pm 5 \%(2.375 \mathrm{~V}$ to 2.625 V$)$
$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 10 \%$ (3.0 V to 3.6 V)
- Internal 50Ω Input Termination Resistors
- Industrial Temp. Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
- QFN-32 Package
- These are Pb -Free Devices

Applications

- Clock and Data Distribution
- Networking and Communications
- High End Computing
- Wireless and Wired Infrastructure

End Products

- Servers
- Ethernet Switch/Routers
- ATE
- Test and Measurement

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

QFN32 MN SUFFIX CASE 488AM
MARKING DIAGRAM*

A	$=$ Assembly Location
WL	$=$ Wafer Lot
YY	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

*For additional marking information, refer to Application Note AND8002/D.

Figure 1. Simplified Logic Diagram

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}-\longrightarrow
\end{aligned}
$$

Figure 2. Pin Configuration (Top View)

Figure 3. NB6L56 Pinout: QFN-32 (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	1/0	Pin Description
$\begin{gathered} 1,4 \\ 5,8 \\ 25,28 \\ 29,32 \end{gathered}$	INBO, INBO INB1, INB1 INAO, INAO INA1, INA1	LVPECL, CML, LVDS Input	Noninverted, Inverted Differential Input pairs (Note 1). Default state is indeterminate if left floating open. Do not connect unused input pairs with one input connected to VCC and the complementary input to GND. For differential and single ended interface, see "Interface Applications".
$\begin{gathered} 2,6 \\ 26,30 \end{gathered}$	VTB0, VTB1 VTAO, VTA1		Internal 100Ω Center-tapped Termination Pin for Differential Input pairs (Figure 4)
$\begin{gathered} 3 \\ 7 \\ 27 \\ 31 \end{gathered}$	VREFACBO VREFACB1 VREFACAO VREFACA1	-	Output Voltage Reference for Capacitor-Coupled Inputs or Single Ended Interface (see "Interface Applications")
$\begin{aligned} & 15 \\ & 18 \end{aligned}$	$\begin{aligned} & \hline \text { SELB } \\ & \text { SELA } \end{aligned}$	LVTTL / LVCMOS Input	Input Select pin; LOW for INO Inputs, HIGH for IN1 Inputs; defaults HIGH when left open
14, 19	NC	-	No Connect
$\begin{gathered} 10,13,16,17 \\ 20,23 \end{gathered}$	VCC	Power	Positive Supply Voltage. All VCC pins must be connected to the positive power supply for correct DC and AC operation.
$\begin{aligned} & 11,12 \\ & 21,22 \end{aligned}$	$\begin{aligned} & \overline{\mathrm{QB}, \mathrm{QB}} \\ & \overline{\mathrm{QA}, \mathrm{QA}} \end{aligned}$	LVPECL Output	Inverted, Non-inverted Differential Outputs Note 1.
9, 24	GND	Ground	Negative Supply Voltage, connected to Ground
-	EP	-	The Exposed Pad (EP) on the package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is connected to the die and must only be connected electrically to GND on the PC board.

1. If no signal is applied on any INxn input pair, the device will be susceptible to self-oscillation.
2. All V_{CC} and GND pins must be externally connected to a power supply for proper operation.

Table 2. INPUT SELECT FUNCTION TABLE

SELA/SELB	\mathbf{Q}	$\overline{\mathbf{Q}}$
L	$\mathrm{IN} \mathrm{\times 0}$	$\mathbb{N} \times 0$
H	$\mathrm{IN} \mathrm{\times 1}$	$\mathbb{N} \times 1$

Table 3. ATTRIBUTES

Characteristic	Value
ESD Protection $\begin{gathered}\text { Human Body Model } \\ \text { Machine Model }\end{gathered}$	$\begin{aligned} & >2 \mathrm{kV} \\ & 200 \mathrm{~V} \end{aligned}$
Input Pullup resistor (RPU)	$75 \mathrm{k} \Omega$
Moisture Sensitivity (Note 3) QFN32	Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	1023
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

3. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS (Note 4)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit	
V_{CC}	Positive Power Supply	GND $=0 \mathrm{~V}$		4.0	V	
$\mathrm{V}_{\text {INPP }}$	Differential Input Voltage \|INx - INx				1.89	V
I_{N}	Input Current Through RT (50Ω Resistor)			± 40	mA	
IOUT	Output Current	$\begin{aligned} & \text { Continuous } \\ & \text { Surge } \end{aligned}$		$\begin{aligned} & \hline \pm 50 \\ & \pm 100 \end{aligned}$	mA	
$\mathrm{I}_{\text {VREFAC }}$	VREFAC Sink/Source Current			± 1.5	mA	
T_{A}	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$	
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient) (Note 4)	$\begin{gathered} 0 \text { lfpm } \\ 500 \text { lfpm } \end{gathered}$	$\begin{aligned} & \text { QFN-32 } \\ & \text { QFN - } 32 \end{aligned}$	$\begin{aligned} & 31 \\ & 27 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case) (Note 4)	Standard Board	QFN - 32	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
ψ Jc	Thermal Resistance (Junction-to-Board)			16	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
$\mathrm{T}_{\text {sol }}$	Wave Solder Pb-Free			265	${ }^{\circ} \mathrm{C}$	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
4. JEDEC standard 51-6, multilayer board - 2S2P (2 signal, 2 power) with eight filled thermal vias under exposed pad.

Table 5. DC CHARACTERISTICS $\mathrm{V}_{C C}=2.5 \pm 5 \%(2.375 \mathrm{~V}$ to 2.625 V$) ; \mathrm{V}_{\mathrm{CC}}=3.3 \pm 10 \%(3.0 \mathrm{~V}$ to 3.6 V$)$ (Note 5)

Symbol	Characteristic	Min	Typ	Max	Unit
$I_{\text {CC }}$	Power Supply Current (Inputs and Outputs Open)		65	85	mA

LVPECL OUTPUTS

V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}-1.145$		$\mathrm{~V}_{\mathrm{CC}}-0.895$	mV
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}-2.000$		$\mathrm{~V}_{\mathrm{CC}}-1.695$	mV
$\mathrm{V}_{\text {OUT }}$	Output Swing (Single Ended)	400	800		mV
	Output Swing (Differential)	800	1600		

DIFFERENTIAL INPUT DRIVEN SINGLE-ENDED (Note 6) (Figures 5 and 6)

V_{th}	Input Threshold Reference Voltage Range	1125		$\mathrm{~V}_{\mathrm{CC}}-75$	mV
V_{IH}	Single-ended Input HIGH Voltage	$\mathrm{V}_{\mathrm{th}}+75$		$\mathrm{~V}_{\mathrm{CC}}$	mV
V_{IL}	Single-ended Input LOW Voltage	GND		$\mathrm{V}_{\mathrm{th}}-75$	mV
$\mathrm{V}_{\mathrm{ISE}}$	Single-ended Input Voltage $\left(\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\mathrm{IL}}\right)($ Note 6$)$	150		3015	mV

DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Note 7) (Figures 7 and 8)

$\mathrm{V}_{\text {IHD }}$	Differential Input HIGH Voltage	1200		$\mathrm{~V}_{\mathrm{CC}}$	mV
$\mathrm{V}_{\text {ILD }}$	Differential Input LOW Voltage	GND		$\mathrm{V}_{\text {IHD }}-100$	mV
$\mathrm{V}_{\text {ID }}$	Differential Input Voltage ($\left.\mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}\right)$	100		1890	mV
$\mathrm{V}_{\text {CMR }}$	Input Common Mode Range (Differential Configuration) (Figure 9)	1150		$\mathrm{~V}_{\mathrm{CC}}-50$	mV
I_{IH}	Input HIGH Current (VTnx Open)	-150		150	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current (VTnx Open)	-150		150	$\mu \mathrm{~A}$

LVTTL / LVCMOS INPUTS (SELA/SELB)

V_{IH}	Input HIGH Voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage			0.8	V
I_{IL}	Input LOW Current $\left(\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\right)$	-300			$\mu \mathrm{~A}$
I_{IH}	Input HIGH Current $\left(\mathrm{V}_{\mathrm{CC}}\right)$			75	$\mu \mathrm{~A}$

TERMINATION RESISTORS

$\mathrm{R}_{\text {TIN }}$	Internal Input Termination Resistor INxn/INxn to VTxn	45	50	55	Ω

REFERENCE VOLTAGE

VREF-AC	Output Reference Voltage	$\mathrm{V}_{\mathrm{CC}}-1.35$	$\mathrm{~V}_{\mathrm{CC}}-1.2$	$\mathrm{~V}_{\mathrm{CC}}-1.1$	V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
5. Outputs evaluated with 50Ω resistors to $\mathrm{V}_{T \mathrm{~T}}=\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$ for proper operation (See Figure 16).
6. VTH is applied to the complementary input when operating in single-ended mode. VIH, VIL and VTH parameters must be complied with simultaneously.
7. VIHD, VILD and VCMR parameters must be complied with simultaneously. VCMR max varies $1: 1$ with $V_{C C}$.

Table 6. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 5 \%(2.375 \mathrm{~V}$ to 2.625 V$) ; \mathrm{V}_{\mathrm{CC}}=3.3 \pm 10 \%$ (3.0 V to 3.6 V) (Note 8)

Symbol	Characteristic	Min	Typ	Max	Unit
$\mathrm{f}_{\text {MAX }}$	Maximum Input Clock Frequency $V_{\text {outpp }} \geq 400 \mathrm{mV}$ Maximum Operating Data Rate (NRZ) $V_{\text {outpp }} \geq 400 \mathrm{mV}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$			Ghz Gbps
fSEL	Maximum Toggle Frequency, SELA/SELB	25	50		MHz
$\mathrm{V}_{\text {OUTPP }}$	Output Voltage Amplitude (Differential Interconnect) $\mathrm{f}_{\text {in }} \leq 2.5 \mathrm{GHz}$	400			mVpp
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay to Differential Outputs, @ 1 GHz , INxn/INxn to $\mathrm{Qx}, \overline{\mathrm{Qx}}$ SELx to Qx, Qx	$\begin{aligned} & 160 \\ & 100 \end{aligned}$	$\begin{aligned} & 250 \\ & 260 \end{aligned}$	$\begin{aligned} & 360 \\ & 400 \end{aligned}$	ps
tpLH Tempco	Differential Propagation Delay Temperature Coefficient		143		$\Delta \mathrm{fs} /{ }^{\circ} \mathrm{C}$
tskew	Input to Input per Bank Within Device Output Bank to Output Bank Within Device		$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	ps
$\mathrm{t}_{\text {JITEER }}$	DATA JITTER R_{J} for K28.7 at 2.5 GHz (RMS) CLOCK JITTER DJ for NRZ PRBS23 / K28.5 at 2.5 Gbps Cycle to Cycle (1 K WFMS; RMS) Total Jitter TJ (PP)			$\begin{gathered} 1 \\ 10 \\ 1 \\ 10 \end{gathered}$	ps
tjit(\$)	Integrated Phase Jitter fin = 155.52 MHz and $1 \mathrm{GHz} 12 \mathrm{kHz}-20 \mathrm{MHz}$ Offset (RMS)		35		fs
$\mathrm{t}_{\text {JITTER }}$	Crosstalk Induced Jitter Input to Input per Output Bank Within Device (Note 9)			0.7	psRMS
$\mathrm{V}_{\text {INPP }}$	Input Voltage Swing (Differential Configuration) (Note 10)	100		1200	mV
$\mathrm{tr}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall Times @ $1 \mathrm{GHz}(20 \%-80 \%), \mathrm{Q}_{\mathrm{x}}, \overline{\mathrm{Q}_{\mathrm{x}}}$	50	100	180	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
8. Differential 50% duty cycle at $\mathrm{V}_{\text {INPPmin }}$ clock source. Outputs evaluated with 50Ω resistors to $\mathrm{V}_{T T}=\mathrm{V}_{C C}-2.0 \mathrm{~V}$ (See Figure 16). Input crosspoint to output crosspoint for $\operatorname{INxn} / \mathbb{N x n}$ to Qx, Qx; 50% input to output crosspoint for SELx to Qx, Qx. See Figures 5, 10 and 11.
9. Crosstalk is measured at the output while applying two similar clock frequencies that are asynchronous with respect to each other at the inputs.
10. Input voltage swing is a single-ended measurement operating in differential mode.

Figure 4. Simplified Input Structure

Figure 5. Differential Input Driven Single-Ended

Figure 6. $\mathbf{V}_{\text {th }}$ Diagram

Figure 7. Differential Inputs Driven Differentially

GND
Figure 9. VCMR Diagram

Figure 10. AC Reference Measurement

Figure 11. SEL to Qx Timing Diagram

Figure 12. Typical LVPECL Interface (see AND8020)

Figure 13. Typical LVDS Interface

Figure 14. Typical Standard 50Ω Load CML Interface

Figure 15. Typical LVPECL Capacitor-Coupled Differential Interface (V_{T} Connected to $\mathrm{V}_{\mathrm{REFAC}}$) *VREFAC bypassed to ground with a $0.01 \mu \mathrm{~F}$ capacitor.

Figure 16. Typical Termination for LVPECL Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping †
NB6L56MNG	QFN32 (Pb-Free)	74 Units / Rail
NB6L56MNTXG	QFN32 (Pb-Free)	$1000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

QFN32 5x5, 0.5P
CASE 488AM ISSUE A

SCALE 2:1

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-F r e e$ strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON20032D	Electronic versions are uncontrolled except when accessed directly from the Document Repo Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	QFN32 5x5 0.5P	PAG

[^0]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK854BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7 ADCLK905BCPZ-WP

[^0]: ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

