2.5V / 3.3V Differential 4:1 Mux to 1:2 CML Clock/Data Fanout / Translator

Multi-Level Inputs w/ Internal Termination

Description

The NB6L572M is a high performance differential 4:1 Clock / Data input multiplexer and a 1:2 CML Clock / Data fanout buffer that operates up to $6 \mathrm{GHz} / 8 \mathrm{Gbps}$ respectively with a 2.5 V or 3.3 V power supply.

The differential Clock / Data inputs have internal 50Ω termination resistors and will accept differential LVPECL, CML, or LVDS logic levels. The NB6L572M incorporates a pair of Select pins that will choose one of four differential inputs and will produce two identical CML output copies of Clock or Data.

As such, the NB6L572M is ideal for SONET, GigE, Fiber Channel, Backplane and other Clock/Data distribution applications.

The two differential CML outputs will swing 400 mV when externally loaded and terminated with a 50Ω resistor to V_{CC} and are optimized for low skew and minimal jitter.

The NB6L572M is offered in a low profile $5 \times 5 \mathrm{~mm} 32$-pin QFN $\mathrm{Pb}-$ Free package. Application notes, models, and support documentation are available at www.onsemi.com. The NB6L572M is a member of the ECLinPS MAX ${ }^{\mathrm{TM}}$ family of high performance clock products.

Figure 1. Simplified Block Diagram

Figure 2. Pinout: QFN-32 (Top View)

Table 2. PIN DESCRIPTION

Pin Number	Pin Name	1/0	Pin Description
$\begin{gathered} 1,4 \\ 5,8 \\ 25,28 \\ 29,32 \end{gathered}$	$\begin{aligned} & \text { INO, INO } \\ & \text { IN1, } \overline{\text { IN1 }} \\ & \text { IN2, IN2 } \\ & \text { IN3, IN3 } \end{aligned}$	LVPECL, CML, LVDS Input	Non-inverted, Inverted, Differential Clock or Data Inputs
$\begin{gathered} 2,6 \\ 26,30 \end{gathered}$	$\begin{aligned} & \text { VT0, VT1 } \\ & \text { VT2, VT3 } \end{aligned}$		Internal 100Ω Center-tapped Termination Pin for $\mathrm{INx} / \mathrm{INx}$
$\begin{aligned} & 15 \\ & 18 \end{aligned}$	SELO SEL1	$\underset{\substack{\text { Input }}}{\text { LVTTL/LVCMOS }}$	Input Select pins, default HIGH when left open through a $131 \mathrm{k} \Omega$ pullup resistor. Input logic threshold is $\mathrm{V}_{\mathrm{CC}} / 2$. See Select Function, Table 1.
14, 19	NC	-	No Connect
$\begin{aligned} & 10,13,16 \\ & 17,20,23 \end{aligned}$	VCC	-	Positive Supply Voltage. All V_{CC} pins must be connected to the positive power supply for correct DC and AC operation.
$\begin{aligned} & 11,12 \\ & 21,22 \end{aligned}$	$\begin{aligned} & \overline{\mathrm{Q} 0, \mathrm{Q0}} \\ & \overline{\mathrm{Q} 1}, \mathrm{Q} 1 \end{aligned}$	CML Output	Non-inverted, Inverted Differential Outputs.
9, 24	GND		Negative Supply Voltage, connected to Ground
$\begin{aligned} & \hline 3 \\ & 7 \\ & 27 \\ & 31 \end{aligned}$	VREF-AC0 VREF-AC1 VREF-AC2 VREF-AC3	-	Output Voltage Reference for Capacitor-Coupled Inputs
-	EP	-	The Exposed Pad (EP) on the QFN-32 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is electrically connected to the die, and must be electrically connected to GND.

1. In the differential configuration when the input termination pins (VT0, VT1, VT2, VT3) are connected to a common termination voltage or left open, and if no signal is applied on $\mathrm{INx} / \mathbb{\mathrm { Nx }}$ input, then the device will be susceptible to self-oscillation.
2. All V_{CC}, and GND pins must be externally connected to a power supply for proper operation.

Table 3. ATTRIBUTES

Characteristics	Value
ESD Protection $\begin{gathered}\text { Human Body Model } \\ \text { Machine Model }\end{gathered}$	$\begin{gathered} >2 \mathrm{kV} \\ >200 \mathrm{~V} \end{gathered}$
R ${ }_{\text {PU }}$ - SELx Input Pull-up Resistor	$131 \mathrm{k} \Omega$
Moisture Sensitivity (Note 3) QFN-32	Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V -0 @ 0.125 in
Transistor Count	275
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

3. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
$\mathrm{V}_{\text {CC }}$	Positive Power Supply	GND $=0 \mathrm{~V}$		-0.5 V to +4.0	V
$\mathrm{V}_{\text {IN }}$	Positive Input Voltage	GND $=0 \mathrm{~V}$		-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {INPP }}$	Differential Input Voltage \|IN - $\mathbb{I N x} \mid$			1.89	V
$\mathrm{I}_{\text {out }}$	Output Current Through R_{T} (50Ω Resistor)			± 40	mA
I_{N}	Input current Through RT (50Ω resistor)			± 40	mA
IVREFAC	VREFAC Sink or Source Current			± 1.5	mA
$\mathrm{T}_{\text {A }}$	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 4)	$\begin{aligned} & 0 \text { lfpm } \\ & 500 \text { lfpm } \end{aligned}$	$\begin{aligned} & \text { QFN32 } \\ & \text { QFN32 } \end{aligned}$	$\begin{aligned} & 31 \\ & 27 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{Jc}	Thermal Resistance (Junction-to-Case) (Note 4)		QFN32	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder	$\leq 20 \mathrm{sec}$		265	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
4. JEDEC standard multilayer board - 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 5. DC CHARACTERISTICS CML OUTPUT $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 5)

Symbol	Characteristic		Min	Typ	Max	Unit
POWER SUPPLY						
V_{CC}	Power Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 3.0 \\ 2.375 \end{gathered}$	$\begin{aligned} & 3.3 \\ & 2.5 \end{aligned}$	$\begin{gathered} \hline 3.6 \\ 2.625 \end{gathered}$	V
I_{Cc}	Power Supply Current for V_{CC} (Inputs and Outputs Open)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 130 \\ & 115 \end{aligned}$	$\begin{aligned} & 165 \\ & 150 \end{aligned}$	mA

CML OUTPUTS (Note 6)

V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{VCC}=3.3 \mathrm{~V} \\ & \mathrm{VCC}=2.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-30 \\ 3270 \\ 2470 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-10 \\ 3290 \\ 2490 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & 3300 \\ & 2500 \end{aligned}$	mV
VoL	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-650 \\ 2650 \\ \mathrm{~V}_{\mathrm{CC}}-650 \\ 1850 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-450 \\ 2850 \\ \mathrm{~V}_{\mathrm{CC}}-450 \\ 2050 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-300 \\ 3000 \\ \mathrm{v}_{\mathrm{CC}}-300 \\ 2200 \end{gathered}$	mV

DIFFERENTIAL CLOCK INPUTS DRIVEN SINGLE-ENDED (Figures 5 \& 6) (Note 8)

V_{IH}	Single-ended Input HIGH Voltage	$\mathrm{V}_{\mathrm{th}}+100$		$\mathrm{~V}_{\mathrm{CC}}$	mV
V_{IL}	Single-ended Input LOW Voltage	GND		$\mathrm{V}_{\mathrm{th}}-100$	mV
V_{th}	Input Threshold Reference Voltage Range (Note 8)	1100		$\mathrm{~V}_{\mathrm{CC}}-100$	mV
$\mathrm{V}_{\text {ISE }}$	Single-ended Input Voltage $\left(\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\mathrm{IL}}\right)$	200		1200	mV

VREFAC

$\mathrm{V}_{\text {REF-AC }}$	Output Reference Voltage ($100 \mu \mathrm{~A}$ Load)	1050	$\mathrm{~V}_{\mathrm{CC}}-1250$	$\mathrm{~V}_{\mathrm{CC}}-1050$	mV

DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 7 \& 8) (Note 9)

$\mathrm{V}_{\text {IHD }}$	Differential Input HIGH Voltage (IN, IN)	1200	V_{CC}	mV
$\mathrm{V}_{\text {ILD }}$	Differential Input LOW Voltage (IN, IN)	0	$\mathrm{V}_{\mathrm{IHD}}-100$	mV
$\mathrm{V}_{\text {ID }}$	Differential Input Voltage (IN, IN) ($\mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}$)	100	1200	mV
$\mathrm{V}_{\text {CMR }}$	Input Common Mode Range (Differential Configuration, Note 10) (Figure 9)	1050	$\mathrm{V}_{\mathrm{CC}}-50$	mV
I_{H}	Input HIGH Current IN / INx (VTIN / VTINx Open)	-150	150	$\mu \mathrm{A}$
I/L	Input LOW Current IN / INx (VTIN / VTINx Open)	-150	150	$\mu \mathrm{A}$

CONTROL INPUT (SELx Pin)

V_{IH}	Input HIGH Voltage for Control Pin	$\mathrm{V}_{\mathrm{CC}} \times 0.65$		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input LOW Voltage for Control Pin	GND		$\mathrm{V}_{\mathrm{CC}} \times 0.35$	V
I_{IH}	Input HIGH Current	-150		150	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current	-150		150	$\mu \mathrm{~A}$

TERMINATION RESISTORS

$R_{\text {TIN }}$	Internal Input Termination Resistor (Measured from INx to VTx)	45	50	55	Ω
$R_{\text {TOUT }}$	Internal Output Termination Resistor	45	50	55	Ω

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
5. Input and Output parameters vary $1: 1$ with V_{CC}.
6. CML outputs loaded with 50Ω to V_{CC} for proper operation.
7. $V_{\text {th }}$ is applied to the complementary input when operating in single-ended mode.
8. $\mathrm{V}_{\text {th }}, \mathrm{V}_{\text {IH }}, \mathrm{V}_{\mathrm{IL}, \text {, and }} \mathrm{V}_{\text {ISE }}$ parameters must be complied with simultaneously.
9. $V_{I H D}, V_{I L D}, V_{I D}$ and $V_{C M R}$ parameters must be complied with simultaneously.
10. $V_{C M R}$ min varies $1: 1$ with $G N D, V_{C M R}$ max varies $1: 1$ with $V_{C C}$. The $V_{C M R}$ range is referenced to the most positive side of the differential input signal.

Table 6. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 11)

Symbol	Characteristic	Min	Typ	Max	Unit
$\mathrm{f}_{\text {MAX }}$	Maximum Input Clock Frequency $\mathrm{V}_{\text {OUT }} \geq 250 \mathrm{mV}$	5	6		GHz
f DATAMAX	Maximum Operating Data Rate NRZ, (PRBS23)	6.5	8		Gbps
$\mathrm{f}_{\text {SEL }}$	Maximum Toggle Frequency, SELx	20	40		MHz
V OUTPP	Output Voltage Amplitude (@ $\mathrm{V}_{\text {INPPmin }}$) $\mathrm{fin} \leq 5 \mathrm{GHz}$ (Note 12) (Figure 10)	250	400		mV
$t_{\text {PLH }}$, $t_{\text {PHL }}$	Propagation Delay to Differential Outputs @ $1 \mathrm{GHz} \operatorname{INx} / / \mathrm{Nx}$ to Qx/Qx Measured at Differential Crosspoint @ 50 MHz SELx to Qx	125	$\begin{gathered} 200 \\ 4 \end{gathered}$	$\begin{gathered} 250 \\ 10 \end{gathered}$	$\begin{aligned} & \text { ps } \\ & \text { ns } \end{aligned}$
$t_{P D}$ Tempco	Differential Propagation Delay Temperature Coefficient		100		$\Delta \mathrm{fs} /{ }^{\circ} \mathrm{C}$
tskew	Output - Output skew (within device) (Note 13) Device - Device skew (tpdmax - tpdmin)		$\begin{aligned} & 0 \\ & 5 \end{aligned}$	$\begin{aligned} & 15 \\ & 25 \end{aligned}$	ps
$\mathrm{t}_{\text {DC }}$	Output Clock Duty Cycle (Reference Duty Cycle = 50\%) fin $=1 \mathrm{GHz}$	45	50	55	\%
Φ_{N}	Phase Noise, fin $=1 \mathrm{GHz}$ 10 kHz 100 kHz 1 MHz 10 MHz 20 MHz 40 MHz		$\begin{aligned} & \hline-134 \\ & -136 \\ & -149 \\ & -150 \\ & -150 \\ & -150 \end{aligned}$		dBc
$\mathrm{t}_{\text {¢ }}{ }^{\text {N }}$	Integrated Phase Jitter (Figure x) fin $=1 \mathrm{GHz}, 12 \mathrm{kHz}-20 \mathrm{MHz}$ Offset (RMS)		35		fs
$t_{\text {JITTER }}$	Random Clock Jitter, RJ(RMS) (Note 14) $f_{\text {in }} \leq 5 \mathrm{GHz}$ Deterministic Jitter, DJ (Note 15) (FR4 $\left.\leq 12^{\prime}\right)$ $\mathrm{f}_{\text {in }} \leq 6.5 \mathrm{Gbps}$		$\begin{gathered} 0.2 \\ 1 \end{gathered}$	$\begin{gathered} 0.8 \\ 5 \end{gathered}$	ps RMS ps pk-pk
	Crosstalk Induced Jitter (Adjacent Channel) (Note 16)		0.35	0.7	ps RMS
$\mathrm{V}_{\text {INPP }}$	Input Voltage Swing (Differential Configuration) (Note 17)	100		1200	mV
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall Times @ 1 GHz; (20\% - 80\%), , $\mathrm{IN}=400 \mathrm{mV} \mathrm{Qx}, \overline{\mathrm{Qx}}$	20	35	50	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
11. Measured using a $100 \mathrm{mVpk}-\mathrm{pk}$ source, 50% duty cycle clock source. All output loading with external 50Ω to V_{Cc}. Input edge rates $40 \mathrm{ps}(20 \%-80 \%)$.
12. Output voltage swing is a single-ended measurement operating in differential mode.
13. Skew is measured between outputs under identical transitions and conditions. Duty cycle skew is defined only for differential operation when the delays are measured from cross-point of the inputs to the cross-point of the outputs.
14. Additive RMS jitter with 50% duty cycle clock signal.
15. Additive Peak-to-Peak data dependent jitter with input NRZ data at PRBS23.
16. Crosstalk is measured at the output while applying two similar clock frequencies that are asynchronous with respect to each other at the inputs.
17. Input voltage swing is a single-ended measurement operating in differential mode.

Figure 3. Clock Output Voltage Amplitude (Voutpp) vs. Input Frequency (f_{in}) at Ambient Temperature (Typical)

Figure 4. Input Structure

Figure 5. Differential Input Driven Single-Ended

Figure 7. Differential Inputs Driven Differentially

Figure 9. VCMR Diagram

Figure 10. AC Reference Measurement

Figure 11. SELx to Qx Timing Diagram

Figure 14. Standard 50Ω Load CML Interface

Figure 16. Typical CML Output Structure and Termination ($\mathrm{V}_{\mathrm{Cc}}=2.5 \mathrm{~V}$ or 3.3 V)

Figure 15. Capacitor-Coupled Differential Interface ($\mathbf{V}_{\mathbf{T}}$ Connected to External $\mathbf{V}_{\text {REFAC }}$)
*VREFAC bypassed to ground with a $0.01 \mu \mathrm{~F}$ capacitor.

Figure 17. Alternative Output Termination ($\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$, Only)

DEVICE ORDERING INFORMATION

Device	Package	Shipping †
NB6L572MMNG	QFN-32 (Pb-Free)	74 Units / Rail
NB6L572MMNR4G	QFN-32 (Pb-Free)	$1000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ECLinPS MAX is a trademark of Semiconductor Component Industries, LLC (SCILLC).

QFN32 5x5, 0.5P
CASE 488AM ISSUE A

SCALE 2:1

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-F r e e$ strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON20032D	Electronic versions are uncontrolled except when accessed directly from the Document Repo Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	QFN32 5x5 0.5P	PAG

[^0]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C EC4P-221-MRXD1 6EP1332-1SH71 6ES7223-1PH32-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B HMC6832ALP5LE CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805EQGI 49FCT805CTQG 74FCT3807ASOG 74FCT3807EQGI 74FCT388915TEPYG 853S012AKILF 853S013AMILF 853S058AGILF 8V79S680NLGI ISPPAC-CLK5312S-01TN48I ISPPAC-CLK5520V-01TN100I

[^0]: ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

