NB6L72M

2.5V / 3.3V Differential 2 X 2 Crosspoint Switch with CML Outputs

Multi- Level Inputs w/ Internal Termination

Description

The NB6L72M is a clock or data high-bandwidth fully differential 2×2 Crosspoint Switch with internal source termination and CML output structure, optimized for low skew and minimal jitter. The differential inputs incorporate internal 50Ω termination resistors and will accept LVPECL, CML, LVDS, LVCMOS, or LVTTL logic levels. The SELECT inputs are single-ended and can be driven with LVCMOS/LVTTL.

The 16 mA differential CML outputs provide matching internal 50Ω terminations and 400 mV output swings when externally terminated with a 50Ω resistor to V_{CC}.

The device is offered in a small $3 \mathrm{~mm} \times 3 \mathrm{~mm} 16$-pin QFN package. The NB6L72M is a member of the ECLinPS MAX ${ }^{\text {TM }}$ family of high performance clock and data management products.

Features

- Input Clock Frequency $>3.0 \mathrm{GHz}$
- Input Data Rate > $3 \mathrm{~Gb} / \mathrm{s}$
- 360 ps Typical Propagation Delay
- 65 ps Typical Rise and Fall Times
- Differential CML Outputs, 380 mV peak-to-peak, typical
- Operating Range: $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 3.63 V with $\mathrm{GND}=0 \mathrm{~V}$
- Internal Input and Output Termination Resistors, 50Ω
- Functionally Compatible with Existing 2.5 V / 3.3 V LVEL, LVEP, EP, and SG Devices
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Ambient Operating Temperature
- These are Pb -Free Devices

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

MARKING DIAGRAM*
OFN-16 MN SUFIX CASE 485G

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
-	= Pb-Free Package
(Note: Microdot may be in either location)	

[^0]
ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

Figure 1. Logic/Block Diagram

NB6L72M

Table 1. INPUT/OUTPUT SELECT TRUTH TABLE

SEL0 *	SEL1 *	Q0	Q1
L	L	D0	D0
H	L	D1	D0
L	H	D0	D1
H	H	D1	D1

*Defaults HIGH when left open

Figure 2. Pin Configuration (Top View)

Table 2. PIN DESCRIPTION

Pin	Name	1/0	Description
1	SELO	LVTTL,LVCMOS Input	Select Logic Input control that selects D0 or D1 to output Q0. See Table 1, Select Input Function Table. Pin defaults HIGH when left open
2	D0	LVPECL, CML, LVDS, LVTTL, LVCMOS, Input	Noninverted Differential Input. Note 1
3	$\overline{\text { DO }}$	LVPECL, CML, LVDS, LVTTL, LVCMOS, Input	Inverted Differential Input. Note 1
4	VTDO	-	Internal 50Ω Termination Pin. Note 1.
5	VTD1	-	Internal 50Ω termination pin. Note 1.
6	D1	LVPECL, CML, LVDS, LVTTL, LVCMOS, Input	Noninverted Differential Input. Note 1.
7	D1	LVPECL, CML, LVDS, LVTTL, LVCMOS, Input	Inverted Differential Input. Note 1
8	SEL1	LVTTL,LVCMOS Input	Select Logic Input control that selects D0 or D1 to output Q1. See Table 1, Select Input Function Table. Pin defaults HIGH when left open
9	GND	-	Negative Supply Voltage
10	Q1	CML Output	Inverted Differential Output. Typically Terminated with 50Ω Resistor to V_{CC}.
11	Q1	CML Output	Noninverted Differential Output. Typically Terminated with 50Ω Resistor to V_{CC}.
12	V_{CC}	-	Positive Supply Voltage
13	V_{Cc}	-	Positive Supply Voltage
14	Q0	CML Output	Inverted Differential Reset Input. Typically Terminated with 50Ω Resistor to V_{CC}.
15	Q0	CML Output	Noninverted Differential Reset Input. Typically Terminated with 50Ω Resistor to V_{CC}.
16	GND	-	Negative Supply Voltage
-	EP	-	The Exposed Pad (EP) on the QFN-16 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is not electrically connected to the die, but is recommended to be electrically and thermally connected to GND on the PC board.

1. In the differential configuration when the input termination pin (VTDn) are connected to a common termination voltage or left open, and if no signal is applied on Dn/Dn input, then the device will be susceptible to self-oscillation.
2. All V_{CC} and GND pins must be externally connected to a power supply for proper operation.

NB6L72M

Table 3. ATTRIBUTES

For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
$\mathrm{V}_{\text {CC }}$	Positive Power Supply	GND $=0 \mathrm{~V}$		4.0	V
V_{10}	Positive Input/Output Voltage	GND $=0 \mathrm{~V}$	$-0.5 \leq \mathrm{V}_{1 \mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5$	4.5	V
$\mathrm{V}_{\text {INPP }}$	Differential Input Voltage \|D - $\overline{\mathrm{D}} \mid$			$\mathrm{V}_{\text {CC }}$ - GND	V
I_{N}	Input Current Through $\mathrm{R}_{\mathrm{T}}(50 \Omega$ Resistor)	Static Surge		$\begin{aligned} & 45 \\ & 80 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{T}_{\text {A }}$	Operating Temperature Range	QFN-16		-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 3)	0 Ifpm 500 Ifpm	$\begin{aligned} & \text { QFN-16 } \\ & \text { QFN-16 } \end{aligned}$	$\begin{aligned} & 42 \\ & 35 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$\theta \mathrm{Jc}$	Thermal Resistance (Junction-to-Case)	(Note 3)	QFN-16	4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder Pb-Free			265	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
3. JEDEC standard multilayer board - 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 5. DC CHARACTERISTICS, Multi-Level Inputs $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 3.63 V , $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit

POWER SUPPLY CURRENT

$I_{\text {CC }}$	Power Supply Current (Inputs and Outputs Open)	60	80	105	mA

CML OUTPUTS (Notes 5 and 6)

V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-40 \\ 3260 \\ 2460 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-10 \\ 3290 \\ 2490 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & 3300 \\ & 2500 \end{aligned}$	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-500 \\ 2800 \\ 2000 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-400 \\ 2900 \\ 2100 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-300 \\ 3000 \\ 2200 \end{gathered}$	mV

DIFFERENTIAL INPUT DRIVEN SINGLE-ENDED (see Figures 6 and 8)

$\mathrm{V}_{\text {th }}$	Input Threshold Reference Voltage Range (Note 7)	1050		$\mathrm{~V}_{\mathrm{CC}}-150$	mV
V_{IH}	Single-Ended Input HIGH Voltage	$\mathrm{V}_{\text {th }}+150$		$\mathrm{~V}_{\mathrm{CC}}$	mV
V_{IL}	Single-Ended Input LOW Voltage	GND		$\mathrm{V}_{\text {th }}-150$	mV
$\mathrm{V}_{\text {ISE }}$	Single-Ended Input Voltage Amplitude $\left(\mathrm{V}_{\text {IH }}-\mathrm{V}_{\mathrm{IL}}\right)$	300		$\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	mV

DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (see Figures 7 and 9) (Note 8)

$\mathrm{V}_{\text {IHD }}$	Differential Input HIGH Voltage	1200		$\mathrm{~V}_{\mathrm{CC}}$	mV
$\mathrm{V}_{\text {ILD }}$	Differential Input LOW Voltage	GND		$\mathrm{V}_{\mathrm{CC}}-150$	mV
$\mathrm{V}_{\text {ID }}$	Differential Input Voltage Swing (Dn, $\overline{\text { Dn }})\left(\mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}\right.$) (Note 15)	150		$\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	mV
$\mathrm{V}_{\mathrm{CMR}}$	Input Common Mode Range (Differential Configuration) (Note 9)	950		$\mathrm{~V}_{\mathrm{CC}}-75$	mV
I_{IH}	Input HIGH Current Dn/Dn, (VTDn/VTDn Open)	-150		+150	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current Dn/(̄n, (VTDn/VTDn Open)	-150		+150	$\mu \mathrm{~A}$

SINGLE-ENDED LVCMOS/LVTTL CONTROL INPUTS

V_{IH}	Single-Ended Input HIGH Voltage	2000		$\mathrm{~V}_{\mathrm{CC}}$	mV
V_{IL}	Single-Ended Input LOW Voltage	GND		800	mV
I_{IH}	Input HIGH Current	-150		+150	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current	-150		+150	$\mu \mathrm{~A}$

TERMINATION RESISTORS

$\mathrm{R}_{\text {TIN }}$	Internal Input Termination Resistor	40	50	60	Ω
$\mathrm{R}_{\text {TOUT }}$	Internal Output Termination Resistor	40	50	60	Ω

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
4. CML outputs loaded with 50Ω to V_{CC} for proper operation.
5. Input and output parameters vary $1: 1$ with V_{CC}.
6. $\mathrm{V}_{\text {th }}, \mathrm{V}_{\text {IH }}, \mathrm{V}_{\text {IL }}$, and $\mathrm{V}_{\text {ISE }}$ parameters must be complied with simultaneously.
7. $\mathrm{V}_{\text {th }}$ is applied to the complementary input when operating in single-ended mode.
8. $\mathrm{V}_{I H D}, \mathrm{~V}_{I L D}, \mathrm{~V}_{I D}$ and $\mathrm{V}_{\mathrm{CMR}}$ parameters must be complied with simultaneously.
9. $\mathrm{V}_{\mathrm{CMR}}$ minimum varies $1: 1$ with $\mathrm{GND}, \mathrm{V}_{\mathrm{CMR}}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\mathrm{CMR}}$ range is referenced to the most positive side of the differential input signal.

Table 6. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 3.63 V , $\mathrm{GND}=0 \mathrm{~V}$, or $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$, $\mathrm{GND}=-2.375 \mathrm{~V}$ to -3.63 V ,
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; (Note 10)

Symbol	Characteristic		Min	Typ	Max	Unit
V ${ }_{\text {OUTPP }}$	Output Voltage Amplitude (@ VINPPmin) (Note 15) (See Figure 15)	$\mathrm{f}_{\text {in }} \leq 3 \mathrm{GHz}$	250	380		mV
$\mathrm{f}_{\text {DATA }}$	Maximum Operating Data Rate		3			Gb/s
$\begin{aligned} & \mathrm{t} \text { tLH, } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay (@0.5GHz)	Dn to Qn SELn to Qn	230	360	480	ps
$\mathrm{t}_{\text {SKEW }}$	Duty Cycle Skew (Note 11) Within Device Skew Device to Device Skew (Note 12)			6.0	$\begin{aligned} & 20 \\ & 25 \\ & 85 \end{aligned}$	ps
$t_{\text {DC }}$	Output Clock Duty Cycle (Reference Duty Cycle = 50\%)	$\mathrm{f}_{\text {in }} \leq 3.0 \mathrm{GHz}$	40	50	60	\%
$\mathrm{t}_{\text {IITTER }}$	RMS Random Clock Jitter (Note 13) Peak-to-Peak Data Dependent Jitter (Note 14)	$\begin{aligned} \mathrm{f}_{\text {in }} & \leq 3.0 \mathrm{GHz} \\ \mathrm{f}_{\text {DATA }} & =2.5 \mathrm{~Gb} / \mathrm{s} \\ \mathrm{f}_{\text {DATA }} & =3.0 \mathrm{~Gb} / \mathrm{s} \end{aligned}$		$\begin{aligned} & \hline 0.2 \\ & 5.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 15 \\ & 25 \end{aligned}$	ps
$\mathrm{V}_{\text {INPP }}$	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 15)		150		2800	mV
$\mathrm{tr}_{\mathrm{r}, \mathrm{t}} \mathrm{t}$	Output Rise/Fall Times @ 0.5 GHz , (20\% - 80\%),	Q, \bar{Q}		65	120	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
10. Measured by forcing $\mathrm{V}_{\text {INPP }}$ (minimum) from a 50% duty cycle clock source. All loading with an external $\mathrm{R}_{\mathrm{L}}=50 \Omega$ to V_{CC}. Input edge rates $40 \mathrm{ps}(20 \%-80 \%)$.
11. Duty cycle skew is measured between differential outputs using the deviations of the sum of T_{pw} and T_{pw} @ 0.5 GHz .
12. Device to device skew is measured between outputs under identical transition @ 0.5 GHz .
13. Additive RMS jitter with 50% duty cycle clock signal.
14. Additive peak-to-peak data dependent jitter with input NRZ data at PRBS23.
15. Input and output voltage swing is a single-ended measurement operating in differential mode.

Figure 3. Input Structure

Figure 4. Differential Input Driven Single-Ended

Figure 6. Differential Inputs
Driven Differentially
Figure 6. Differential Inpu
Driven Differentially

Figure 5. $\mathbf{V}_{\text {th }}$ Diagram

Figure 7. Differential Inputs Driven Differentially

Figure 8. $\mathrm{V}_{\mathrm{CMR}}$ Diagram

Figure 9. AC Reference Measurement

Figure 10. LVPECL Interface

Figure 11. LVDS Interface

Figure 12. Standard 50Ω Load CML Interface

Figure 13. Capacitor-Coupled
Differential Interface
(VT Connected to V REFAC)

Figure 14. Capacitor-Coupled Single-Ended Interface (VT Connected to V REFAC)
${ }^{*} \mathrm{~V}_{\text {REFAC }}$ bypassed to ground with a $0.01 \mu \mathrm{~F}$ capacitor

NB6L72M

Figure 15. Output Voltage Amplitude (Voutpp) versus Output Frequency at Ambient Temperature (Typical)

Figure 16. CML Output Structure

Figure 17. Typical CML Termination for Output Driver and Device Evaluation

ORDERING INFORMATION

Device	Package	Shipping †
NB6L72MMNG	QFN-16 (Pb-free)	123 Units / Rail
NB6L72MMNR2G	QFN-16 (Pb-free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

QFN16 3x3, 0.5P
CASE 485G
ISSUE G
DATE 08 OCT 2021

side view

battam View

Nates:

1. DIMENSIDNING AND TDLERANCING PER ASME Y14.5M, 1994.
2. CDNTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIDN b APPLIES TD PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FREM THE TERMINAL TIP.
4. CDPLANARITY APPLIES TD THE EXPOSED PAD AS WELL AS. THE TERMINALS.

DETAIL B
${ }^{\text {ALTERNATE }}$

DETAIL A
ALTERNATE TERMINAL
constructions

DIM	MILLIMETERS				
	MIN.	NDM.	MAX.		
A	0.80	0.90	1.00		
A1	0.00	0.03	0.05		
A3	0.20 REF				
b	0.18	0.24			
D	3.00 BSC				
D2	1.65	1.75			1.85
E	3.00 BSC				
E2	1.65	1.75	1.85		
e	0.50 BSC				
k	0.18 TYP				
L	0.30	0.40	0.50		
L1	0.00	0.08	0.15		

GENERIC MARKING DIAGRAM*

${ }^{\circ}$ XXXXX
XXXXX
ALYW:
\bullet

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- $\quad=$ Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " \quad ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON04795D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | QFN16 3X3, 0.5P | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue \& Digital Crosspoint ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
MT093AE1 MT8808AE1 ADV3203ASWZ AD8177ABPZ ISPGDX240VA-4B388 VSC3308YKU LX64EV-3F100C ISPGDX240VA4BN388 LX256EV-5FN484C GX4002-INE3 AD8112JSTZ AD8115ASTZ SN65LVCP22D ADV3205JSTZ SY89540UMY AD75019JPZ AD75019JPZ-REEL AD8106ASTZ AD8107ASTZ AD8108ASTZ AD8110ASTZ AD8111ASTZ AD8116JSTZ AD8152JBPZ AD8153ACPZ AD8155ACPZ AD8158ACPZ AD8159ASVZ ADN4604ASVZ AD8153ACPZ-RL7 ADN4600ACPZ ADV3201ASWZ ADV3226ACPZ ADV3227ACPZ ADV3228ACPZ ADV3229ACPZ HMC858LC4B MAX4550CAI+ EL4544IGZ HA4314BCPZ MAX9152EUE+T MAX9152ESE + MAX4359EWG+ MAX3840ETJ+ MAX4360EAX+ MAX4360EAX+T MAX4549EAX+ MAX4570CWI+ MAX4549EAX+T MAX4570CAI+

[^0]: *For additional marking information, refer to Application Note AND8002/D.

