NB6N239S

3.3 V, 3.0 GHz Any Differential Clock IN to LVDS OUT $\div 1 / 2 / 4 / 8, \div 2 / 4 / 8 / 16$ Clock Divider

Description

The NB6N239S is a high-speed, low skew clock divider with two divider circuits, each having selectable clock divide ratios; $\div 1 / 2 / 4 / 8$ and $\div 2 / 4 / 8 / 16$. Both divider circuits drive LVDS compatible outputs. (More device information on page 7). The NB6N239S is a member of the ECLinPS MAX ${ }^{\text {TM }}$ family of high performance clock products.

Features

- Maximum Clock Input Frequency, 3.0 GHz (1.5 GHz with $\div 1$)
- Input Compatibility with LVDS/LVPECL/CML/HSTL/HCSL
- Rise/Fall Time 120 ps Typical
- $<5 \mathrm{ps}$ Typical Within Device Output Skew
- Example; 622.08 MHz Input Generates 38.88 MHz to 622.08 MHz Outputs
- Internal 50Ω Termination Provided
- Random Clock Jitter < 2 ps RMS
- $\mathrm{QA} \div 1$ Edge Aligned to $\mathrm{QB} \div \mathrm{n}$ Edge
- Operating Range: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.465 V with $\mathrm{GND}=0 \mathrm{~V}$
- Master Reset for Synchronization of Multiple Chips
- V BBAC Reference Output
- Synchronous Output Enable/Disable
- TIA/EIA - 644 Compliant
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.

Figure 1. Simplified Logic Diagram

NB6N239S

Figure 2. Pinout: QFN-16 (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Description
1	VT		Internal 100Ω Center-Tapped Termination Pin for CLK and CLK.
2	CLK	LVDS, LVPECL, CML, HCSL, HSTL Input	Noninverted Differential CLOCK Input.
3	$\overline{\text { CLK }}$	LVDS, LVPECL, CML, HCSL, HSTL Input	Inverted Differential CLOCK Input.
4	$\mathrm{V}_{\text {BBAC }}$		Output Voltage Reference for Capacitor Coupled Inputs, only.
5	EN*	LVCMOS/LVTTL Input	Synchronous Output Enable
6	SELB0*	LVCMOS/LVTTL Input	Clock Divide Select Pin
7	SELB1*	LVCMOS/LVTTL Input	Clock Divide Select Pin
8	GND	Power Supply	Negative Supply Voltage
9	$\overline{\text { QB }}$	LVDS Output	Inverted Differential Output. Typically terminated with 100Ω across differential outputs.
10	QB	LVDS Output	Noninverted Differential Output. Typically terminated with 100Ω across differential outputs.
11	$\overline{\text { QA }}$	LVDS Output	Inverted Differential Output. Typically terminated with 100Ω across differential outputs.
12	QA	LVDS Output	Noninverted Differential Output. Typically terminated with 100Ω across differential outputs.
13	$\mathrm{V}_{\text {CC }}$	Power Supply	Positive Supply Voltage.
14	SELA1*	LVCMOS/LVTTL Input	Clock Divide Select Pin
15	SELA0*	LVCMOS/LVTTL Input	Clock Divide Select Pin
16	$\overline{\mathrm{MR}}{ }^{\star *}$	LVCMOS/LVTTL Input	Master Reset Asynchronous, Default Open High, Asserted LOW
	EP	Power Supply (OPT)	The Exposed Pad on the QFN-16 package bottom is thermally connected to the die for improved heat transfer out of package. The pad is electrically connected to the die, and is recommended to be electrically and thermally connected to GND on the PC board.

*Pins will default LOW when left OPEN.
**Pins will default HIGH when left OPEN.

Figure 3. Logic Diagram

Table 2. FUNCTION TABLE

CLK	EN *	MR** *	FUNCTION
ς	L	H	Divide
\urcorner	H	H	Hold Q
X	X	L	Reset Q

Table 3. CLOCK DIVIDE SELECT, QA OUTPUTS

SELA1 *	SELA0 *		QA Outputs
L	L		Divide by 1
L	H		Divide by 2
H	L	Divide by 4	
H	H		Divide by 8

Table 4. CLOCK DIVIDE SELECT, QB OUTPUTS

SELB1 *	SELB0* *		QB Outputs
L	L		Divide by 2
L	H		Divide by 4
H	L		Divide by 8
H	H	Divide by 16	

$\ulcorner=$ Low-to-High Transition
L = High-to-Low Transition
X = Don't Care
*Pins will default LOW when left OPEN.
**Pins will default HIGH when left OPEN.

Table 5. ATTRIBUTES

Characteristics	Value
$\begin{array}{l}\text { Internal Input Pulldown Resistor } \\ \text { Internal Input Pullup Resistor }\end{array}$	$\begin{array}{rl}75 \mathrm{k} \Omega \\ 75 \mathrm{k} \Omega\end{array}$
ESD Protection	$\begin{array}{r}\text { Human Body Model } \\ \text { Machine Model } \\ \text { Charged Device Model }\end{array}$

>100 \mathrm{~V}

>1000 \mathrm{~V}\end{array}\right]\)

1. For additional Moisture Sensitivity information, refer to Application Note AND8003/D.

Table 6. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{CC}	Positive Mode Power Supply	GND $=0 \mathrm{~V}$		3.6	V
V_{1}	Input Voltage	GND $=0 \mathrm{~V}$	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$	3.6	V
$\mathrm{I}_{\text {SC }}$	Output Short Circuit Current Line-to-Line Line-to-GND			$\begin{aligned} & 12 \\ & 24 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {BBAC }}$	$\mathrm{V}_{\text {BBAC }}$ Sink/Source Current			± 0.5	mA
T_{A}	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	$\begin{aligned} & \hline 0 \text { Ifpm } \\ & 500 \mathrm{lfpm} \end{aligned}$		$\begin{aligned} & 41.6 \\ & 35.2 \end{aligned}$	$\begin{aligned} & \hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	Standard Board		4.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder Pb-Free			265	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 7. DC CHARACTERISTICS, CLOCK INPUTS, LVDS OUTPUTS
$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to 3.465 V , GND $=0 \mathrm{~V}$)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
I_{CC}	Power Supply Current (Inputs and Outputs OPEN)				35	45	55				mA
V_{OH}	Output HIGH Voltage (Notes 2)			1600			1600			1600	mV
V_{OL}	Output LOW Voltage (Notes 2)	900			900			900			mV
V_{OD}	Differential Output Voltage (Figure 21)	250		450	250		450	250		450	mV
$\Delta \mathrm{V}_{\mathrm{OD}}$	$V_{O D}$ Magnitude Change	0		50	0		50	0		50	mV
$\mathrm{V}_{\text {OS }}$	Offset Voltage (Figure 21)	1125		1375	1125		1375	1125		1375	mV
$\Delta \mathrm{V}_{\text {OS }}$	$V_{\text {OS }}$ Magnitude Change	0		50	0		50	0		50	mV

DIFFERENTIAL INPUT DRIVEN SINGLE-ENDED (Figures 7, 10)

$\mathrm{V}_{\text {th }}$	Input Threshold Reference Voltage (Note 3)	100		$V_{C C}-100$	100		$V_{C C}-100$	100		$V_{C C}-100$	mV
V_{IH}	Single-ended Input HIGH Voltage	$\mathrm{V}_{\text {th }}+100$		V_{CC}	$\mathrm{V}_{\text {th }}+100$		V_{CC}	$\mathrm{V}_{\text {th }}+100$		V_{CC}	mV
$\mathrm{V}_{\text {IL }}$	Single-ended Input LOW Voltage	GND		$\mathrm{V}_{\text {th }}-100$	GND		$\mathrm{V}_{\text {th }}-100$	GND		$\mathrm{V}_{\text {th }}-100$	mV
$V_{\text {BBAC }}$	Output Voltage Reference @ $100 \mu \mathrm{~A}$ (Note 6) $3.3 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-1460 \\ 1840 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1330 \\ & \\ & \\ & 1970 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-1200 \\ 2100 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-1460 \\ 1840 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1340 \\ & \\ & \\ & 1960 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-1200 \\ 2100 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-1460 \\ 1840 \end{gathered}$	$\begin{aligned} & V_{C C-} \\ & 1350 \\ & 1950 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-1200 \\ 2100 \end{gathered}$	mV

DIFFERENTIAL INPUT DRIVEN DIFFERENTIALLY (Figures 8, 9, 11) (Note 5)

$\mathrm{V}_{\text {IHD }}$	Differential Input HIGH Voltage	100		V_{CC}	100		V_{CC}	100		V_{CC}	mV
$\mathrm{V}_{\text {ILD }}$	Differential Input LOW Voltage	GND		$\mathrm{V}_{\mathrm{CC}}-100$	GND		$\mathrm{V}_{\mathrm{CC}}-100$	GND		$\mathrm{V}_{\mathrm{CC}}-100$	mV
$\mathrm{V}_{\text {CMR }}$	Input Common Mode Range (Differential Crosspoint Voltage) (Note 4)	50		$\mathrm{V}_{\mathrm{CC}}-50$	50		$\mathrm{V}_{\mathrm{CC}}-50$	50		$\mathrm{V}_{\mathrm{CC}}-50$	mV
$\mathrm{V}_{\text {ID }}$	Differential Input Voltage ($\mathrm{V}_{\mathrm{IHD}}$ (CLK) - $\mathrm{V}_{\text {ILD(CLK) }}$) and $\left(V_{\text {IHD }}\right.$ CLK $) ~-~-~$ $\left.\nabla_{\text {ILD (CLK) }}\right)$	100		$\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$	100		$\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$	100		$\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$	mV
$\mathrm{R}_{\text {TIN }}$	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
2. Outputs loaded with 100Ω across LVDS outputs.
3. $\mathrm{V}_{\text {th }}$ is applied to the complementary input when operating in single-ended mode.
4. $V_{C M R}^{\text {MIN }}$ varies $1: 1$ with $G N D, V_{C M R}^{M A X}$ varies $1: 1$ with $V_{C C}$.
5. Input and output voltage swing is a single-ended measurement operating in differential mode.
6. $V_{\text {BBAC }}$ used to rebias capacitor-coupled inputs only (see Figures 16 and 17).

Table 8. DC CHARACTERISTICS, LVTTL/LVCMOS INPUTS ($\mathrm{V} \mathrm{CC}=3.0 \mathrm{~V}$ to 3.465 V , GND $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Characteristic	Min	Typ	Max	Unit
V_{IH}	Input HIGH Voltage (LVCMOS/LVTTL)	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input LOW Voltage (LVCMOS/LVTTL)	GND		0.8	V
I_{IH}	Input HIGH Current	-150		150	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current	-150		150	$\mu \mathrm{~A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Table 9. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.465 V ; GND $=0 \mathrm{~V}$ (Note 7)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\text {inMAX }}$	Maximum Input CLOCK Frequency $\begin{array}{r} \mathrm{QA} / \mathrm{QB}=(\div 2, \div 4, \div 8, \div 16) \\ \mathrm{QA}=(\div 1) \end{array}$	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$			3.0 1.5			GHz
Voutpp	Output Voltage Amplitude (Notes 9,10$)$ QA $(\div 2,4,8), \operatorname{QB}(\div n)$ $f_{\text {in }} \leq 3.0 \mathrm{GHz}$ QA $(\div 1), \mathrm{QB}(\div \mathrm{n})$ $\mathrm{f}_{\text {in }} \leq 1.5 \mathrm{GHz}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 350 \\ & 350 \end{aligned}$	$\begin{aligned} & 450 \\ & 450 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 350 \\ & 350 \end{aligned}$	$\begin{aligned} & 450 \\ & 450 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 350 \\ & 350 \end{aligned}$	$\begin{aligned} & 450 \\ & 450 \end{aligned}$	mV
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay to CLK, Qn Output Differential @ 50 MHz MR, Qn	$\begin{aligned} & 550 \\ & 420 \end{aligned}$		$\begin{aligned} & 780 \\ & 660 \end{aligned}$	$\begin{aligned} & 550 \\ & 420 \end{aligned}$		$\begin{aligned} & \hline 780 \\ & 660 \end{aligned}$	$\begin{aligned} & 550 \\ & 420 \end{aligned}$		$\begin{aligned} & 780 \\ & 660 \end{aligned}$	ps
t_{RR}	Reset Recovery	0	-90		0	-90		0	-90		ps
$\mathrm{t}_{\text {s }}$	$\begin{array}{lr}\text { Setup Time @ } 50 \mathrm{MHz} & \text { EN, CLK } \\ & \text { SELA/B, CLK }\end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|c\|} \hline-60 \\ -300 \end{array}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \hline-60 \\ -300 \end{gathered}$		0	$\begin{array}{\|c} \hline-60 \\ -300 \end{array}$		ps
th	Hold Time @ 50 MHz CLK, $\begin{array}{r}\text { CLK, EN } \\ \text { CLK, SELA/B }\end{array}$	$\begin{aligned} & 150 \\ & 700 \end{aligned}$	$\begin{gathered} 65 \\ 200 \end{gathered}$		$\begin{aligned} & 150 \\ & 700 \end{aligned}$	$\begin{gathered} 65 \\ 200 \end{gathered}$		$\begin{aligned} & 150 \\ & 700 \end{aligned}$	$\begin{gathered} \hline 65 \\ 200 \end{gathered}$		ps
$\mathrm{t}_{\text {skew }}$	Within-Device Skew @ 50 MHz (Note 8) Device-to-Device Skew (Note 8) Duty Cycle Skew (Note 8)		$\begin{aligned} & 5 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 30 \\ & 80 \\ & 40 \end{aligned}$		$\begin{gathered} 5 \\ 30 \\ 30 \end{gathered}$	$\begin{aligned} & 30 \\ & 90 \\ & 45 \end{aligned}$		$\begin{gathered} 6 \\ 30 \\ 30 \end{gathered}$	$\begin{aligned} & 35 \\ & 90 \\ & 45 \end{aligned}$	ps
tpw	Minimum Pulse Width MR	550			550			550			ps
t ${ }_{\text {IITTER }}$	RMS Random Clock Jitter			2			2			2	ps
$\mathrm{V}_{\text {INPP }}$	Input Voltage Swing (Differential Configuration) (Note 9)	100		$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ -\mathrm{GND} \end{gathered}$	100		$\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{CC}} \\ -\mathrm{GND} \end{array}$	100		$\begin{gathered} \mathrm{V}_{\mathrm{cc}} \\ -\mathrm{GND} \end{gathered}$	mV
$\begin{array}{\|l\|} \hline \mathrm{tr}_{r} \\ \mathrm{t}_{\mathrm{f}} \end{array}$	Output Rise/Fall Times @ $50 \mathrm{MHz} \quad$ Qn, $\overline{\text { Qn }}$ $(20 \%-80 \%)$	70	120	190	70	120	190	70	120	190	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
7. Measured using a $750 \mathrm{mV}, 50 \%$ duty cycle clock source. All loading with 100Ω across LVDS outputs.
8. Skew is measured between outputs under identical transitions and conditions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.
9. Input and output voltage swing is a single-ended measurement operating in differential mode.
10. Output Voltage Amplitude ($V_{\text {OHCLK }}$ - $V_{\text {OLCLK }}$) at input CLOCK frequency, $f_{\text {in }}$. The output frequency, $f_{\text {out }}$, is the input CLOCK frequency divided by $n, f_{\text {out }}=f_{\text {in }} \div n$. Input CLOCK frequency is $\leq 3.0 \mathrm{GHz}$.

Application Information

The NB6N239S is a high-speed, low skew clock divider with two divider circuits, each having selectable clock divide ratios; $\div 1 / 2 / 4 / 8$ and $\div 2 / 4 / 8 / 16$. Both divider circuits drive differential LVDS compatible outputs. The internal dividers are synchronous to each other. Therefore, the common output edges are precisely aligned.

The NB6N239S clock inputs can be driven by a variety of differential signal level technologies including LVDS, LVPECL, HCSL, HSTL, or CML. The differential clock input buffer employs a pair of internal 50Ω termination resistors in a 100Ω center-tapped configuration and accessible via the VT pin. This feature provides transmission line termination on-chip, at the receiver end, eliminating external components. The $\mathrm{V}_{\mathrm{BBAC}}$ reference output is recommended to be used to rebias differential or
single-ended input capacitor-coupled CLOCK signals. For the capacitor-coupled CLK and/or CLK inputs, V ${ }_{\text {BBAC }}$ should be connected to the V_{T} pin and bypassed to ground with a $0.01 \mu \mathrm{~F}$ capacitor. Inputs CLK and $\overline{\mathrm{CLK}}$ must be signal driven or auto oscillation may result.

The common enable ($\overline{\mathrm{EN}}$) is synchronous so that the internal divider flip-flops will only be enabled/disabled when the internal clock is in the LOW state. This avoids any chance of generating a runt pulse on the internal clock when the device is enabled/disabled, as can happen with an asynchronous control. The internal enable flip-flop is clocked on the falling edge of the input clock. Therefore, all associated specification limits are referenced to the negative edge of the clock input.

Figure 4. Timing Diagram

NOTE: On the rising edge of $\overline{M R}, Q$ goes HIGH after the first rising edge of CLK.
Figure 5. Master Reset Timing Diagram

Figure 6. Output Enable Timing Diagrams
The $\overline{\mathrm{EN}}$ signal will "freeze" the internal divider flip-flops on the first falling edge of CLK after its assertion. The internal divider flip-flops will maintain their state during the freeze. When $\overline{\mathrm{EN}}$ is deasserted (LOW), and after the next falling edge of CLK, then the internal divider flip-flops will "unfreeze" and continue to their next state count with proper phase relationships.

Figure 8. Differential Inputs Driven Differentially

Figure 9. Differential Inputs Driven Differentially

Figure 10. $\mathrm{V}_{\text {th }}$ Diagram
Figure 11. $\mathrm{V}_{\mathrm{CMR}}$ Diagram

Figure 12. LVPECL Interface

Figure 13. LVDS Interface

Figure 15. Standard 50Ω Load HCSL \& HSTL Interface

Figure 17. Capacitor-Coupled Single-Ended Interface (V_{T} Connected to $\mathrm{V}_{\mathrm{BBAC}}$)

Figure 16. Capacitor-Coupled Differential Interface (V_{T} Connected to $\mathrm{V}_{\text {BBAC }}$)
${ }^{*} \mathrm{~V}_{\text {BBAC }}$ bypassed to ground with a $0.01 \mu \mathrm{~F}$ capacitor.

Figure 18. Output Voltage Amplitude (VOUTPP) versus Output Clock Frequency at $25^{\circ} \mathrm{C}$ (Typical)
$\mathbf{f}_{\text {out }}(Q A / Q B)=f_{\text {in }} \div \mathbf{n}$;
For $\mathrm{n}=2,4,8,16 ; \mathrm{f}_{\mathrm{in}} \leq 3.0 \mathrm{GHz}$
For $\mathrm{n}=1 ; \mathrm{f}_{\mathrm{in}} \leq 1.5 \mathrm{GHz}$

Figure 19. AC Reference Measurement

Figure 20. Typical LVDS Termination for Output Driver and Device Evaluation, If Receiver Has On-chip Termination, 100Ω Resistor is Not Needed

Figure 21. LVDS Output

ORDERING INFORMATION

Device	Package	Shipping †
NB6N239SMNG	QFN-16,3 (Pb-Free)	123 Units / Rail
NB6N239SMNR2G	QFN-16, $3 \times 3 \mathrm{~mm}$ (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes
AN1405/D - ECL Clock Distribution Techniques
AN1406/D - Designing with PECL (ECL at +5.0 V) $^{\text {AN1503/D }}$ - ECLinPS ${ }^{m}$ I/O SPiCE Modeling Kit
AN1504/D - Metastability and the ECLinPS Family
AN1568/D - Interfacing Between LVDS and ECL
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design
AND8002/D - Marking and Date Codes
AND8020/D - Termination of ECL Logic Devices
AND8066/D - Interfacing with ECLinPS
AND8090/D - AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

QFN16 3x3, 0.5P
CASE 485G
ISSUE F

DETAIL A
ALTERNATE TERMINAL CONSTRUCTIONS

notes:
. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS		
	MIN	NOM	MAX
	0.80	0.90	1.00
A1	0.00	0.03	0.05
A3	0.20 REF		
b	0.24		
D	3.00 BSC		
D2	1.65		
E	1.75	1.85	
E	3.00 BSC		
E2	1.65	1.75	1.85
e	0.50 BSC		
K	0.18 TYP		
L	0.30	0.40	0.50
L1	0.00	0.08	0.15

DETAIL B
ALTERNATE CONSTRUCTIONS

RECOMMENDED

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ECLinPS and ECLinPS MAX are trademarks of Semiconductor Components Industries, LLC (SCILLC).

Abstract

ON Semiconductor and (ON) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C EC4P-221-MRXD1 6EP1332-1SH71 6ES7211-1AE40-0XB0 6ES7223-1PH32-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B HMC6832ALP5LE CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805EQGI 49FCT805CTQG 74FCT3807ASOG 74FCT3807EQGI 74FCT388915TEPYG 853S012AKILF 853S013AMILF 853S058AGILF 8V79S680NLGI ISPPAC-CLK5312S-01TN48I

