2.5 V/3.3 V 1:8 CML Fanout

Multi-Level Inputs w/ Internal Termination

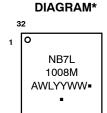
NB7L1008M

Description

The NB7L1008M is a high performance differential 1:8 Clock/Data fanout buffer. The NB7L1008M produces eight identical output copies of Clock or Data operating up to 6 GHz or 10.7 Gb/s, respectively. As such, the NB7L1008M is ideal for SONET, GigE, Fiber Channel, Backplane and other Clock/Data distribution applications. The differential inputs incorporate internal $50~\Omega$ termination resistors that are accessed through the VT pin. This feature allows the NB7L1008M to accept various logic standards, such as LVPECL, CML, LVDS, LVCMOS or LVTTL logic levels. The V_{REFAC} reference output can be used to rebias capacitor–coupled differential or single–ended input signals. The 1:8 fanout design was optimized for low output skew applications. The NB7L1008M is a member of the GigaComm $^{\rm TM}$ family of high performance clock products.

Features

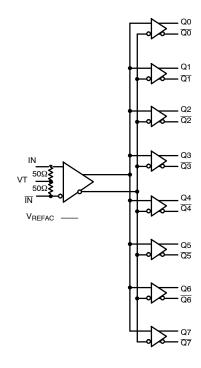
- Input Data Rate > 12 Gb/s Typical
- Data Dependent Jitter < 20 ps
- Maximum Input Clock Frequency > 8 GHz Typical
- Random Clock Jitter < 0.8 ps RMS
- Low Skew 1:8 CML Outputs, < 25 ps max
- Multi-Level Inputs, accepts LVPECL, CML, LVDS
- 160 ps Typical Propagation Delay
- 45 ps Typical Rise and Fall Times
- Differential CML Outputs, 400 mV Peak-to-Peak, Typical
- Operating Range: $V_{CC} = 2.375 \text{ V}$ to 3.6 V, GND = 0 V
- Internal Input Termination Resistors, 50 Ω
- V_{REFAC} Reference Output
- QFN-32 Package, 5 mm x 5 mm
- -40°C to +85°C Ambient Operating Temperature
- These are Pb-Free Devices



ON Semiconductor®

www.onsemi.com

QFN32 MN SUFFIX CASE 488AM


MARKING

A = Assembly Location

WL = Wafer Lot
YY = Year
WW = Work Week
Pb-Free Package

(Note: Microdot may be in either location)

SIMPLIFIED LOGIC DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

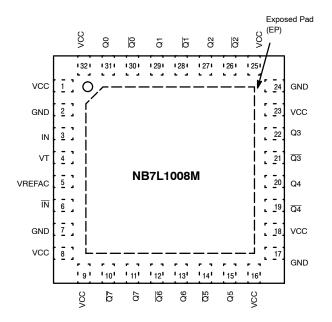


Figure 1. 32-Lead QFN Pinout (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Description
3, 6	IN, ĪN	LVPECL, CML, LVDS Input	Non-inverted / Inverted Differential Clock/Data Input. Note 1
4	VT		Internal 50 Ω Termination Pin for IN and $\overline{\mbox{IN}}$
2, 7 17,24	GND		Negative Supply Voltage. (Note 2)
1, 8, 9, 16, 18, 23, 25, 32	V _{CC}		Positive Supply Voltage. (Note 2)
31, 30, 29, 28, 27, 26, 22, 21, 20, 19, 15, 14, 13, 12, 11, 10		CML	Non-inverted / Inverted Differential Output. (Note 1)
5	VREFAC		Output Voltage Reference for Capacitor-Coupled Inputs, only
-	EP	-	The Exposed Pad (EP) on the QFN-24 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is electrically connected to GND and is recommended to be electrically connected to GND on the PC board.

^{1.} In the differential configuration when the input termination pin (V_T) is connected to a common termination voltage or left open, and if no signal is applied on IN/IN, then the device will be susceptible to self–oscillation. Qn/Qn outputs have internal 50 Ω source termination resistors.

^{2.} All V_{CC} and GND pins must be externally connected to the same power supply voltage to guarantee proper device operation.

Table 2. ATTRIBUTES

Characteristics	Value
ESD Protection Human Body Model Machine Model	> 2 kV > 200 V
Moisture Sensitivity (Note 3) Indefinite Time of the Drypack QFN-32	Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	263
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	•

^{3.} For additional information, refer to Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V		4.0	V
V _{IN}	Input Voltage	GND = 0 V		–0.5 to V _{CC}	V
V _{INPP}	Differential Input Voltage IN - IN			1.89	V
I _{IN}	Input Current Through R _T (50 Ω Resistor)			±40	mA
l _{out}	Output Current	Continuous Surge		34 40	mA
I _{VFREFAC}	V _{REFAC} Sink/Source Current			±1.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient) (Note 4) TGSD 51-6 (2S2P Multilayer Test Board) with Filled Thermal Vias	0 lfpm 500 lfpm	QFN-32 QFN-32	31 27	°C/W °C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	Standard Board	QFN-32	12	°C/W
T _{sol}	Wave Solder Pb-Free			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

4. JEDEC standard multilayer board – 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 4. DC CHARACTERISTICS – CML OUTPUT V_{CC} = 2.375 V to 3.6 V, GND = 0 V, T_A = -40°C to 85°C (Note 6)

Symbol	Characteristic	Min	Тур	Max	Unit
POWER	SUPPLY				
V _{CC}	Power Supply Voltage $ \begin{array}{c} V_{CC} = 3.3 \ V \\ V_{CC} = 2.5 \ V \end{array} $	3.0 2.375	3.3 2.5	3.6 2.625	V
POWER	SUPPLY CURRENT				
I _{CC}	Power Supply Current, Inputs and Outputs Open		265	315	mA
CML OU	TPUTS (Note 5, Figures 10 and 11)				
V _{OH}	Output HIGH Voltage $ \begin{aligned} \text{V}_{CC} &= 3.3 \text{V} \\ \text{V}_{CC} &= 2.5 \text{V} \end{aligned} $	V _{CC} – 30 3270 2470	V _{CC} - 10 3290 2490	V _{CC} 3300 2500	mV
V _{OL}	Output LOW Voltage $ \begin{aligned} V_{CC} &= 3.3 V \\ V_{CC} &= 2.5 V \end{aligned} $	V _{CC} – 600 2700 1900	V _{CC} – 400 2900 2100	V _{CC} – 350 2950 2150	mV
DIFFERE	NTIAL INPUTS DRIVEN SINGLE-ENDED (Notes 7 and 8) (Figu	res 6 and 8)			
V _{IH}	Single-Ended Input HIGH Voltage	V _{th} + 100		V _{CC}	mV
V _{IL}	Single-Ended Input LOW Voltage	GND		V _{th} – 100	mV
V_{th}	Input Threshold Reference Voltage Range	1100		V _{CC} – 100	mV
V _{ISE}	Single-Ended Input Voltage (V _{IH} - V _{IL})	200		1200	mV
V _{REFAC}					
V _{REFAC}	Output Reference Voltage @ 100 μ A for Capacitor – Coupled Inputs, Only $\begin{array}{c} V_{CC} = 3.3 \ V \\ V_{CC} = 2.5 \ V \end{array}$	V _{CC} - 1375 V _{CC} - 1325	V _{CC} - 1200 V _{CC} - 1200	V _{CC} - 1100 V _{CC} - 1075	mV
DIFFERE	NTIAL INPUTS DRIVEN DIFFERENTIALLY (IN, IN) (Note 9) (Fig	gures 4 and 7)			
V_{IHD}	Differential Input HIGH Voltage	1100		V _{CC}	mV
V_{ILD}	Differential Input LOW Voltage	GND		V _{IHD} – 100	mV
V_{ID}	Differential Input Voltage (V _{IHD} - V _{ILD})	100		1200	mV
I _{IH}	Input HIGH Current	-150	40	+150	μΑ
I _{IL}	Input LOW Current	-150	5	+150	μΑ
TERMINA	ATION RESISTORS				
R _{TIN}	Internal Input Termination Resistor	45	50	55	Ω
R _{TOUT}	Internal Output Termination Resistor	45	50	55	Ω

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- 5. CML outputs loaded with 50 Ω to Vcc for proper operation.
 6. Input and output parameters vary 1:1 with V_{CC}.
 7. V_{th}, V_{IH}, V_{IL}, and V_{ISE} parameters must be complied with simultaneously.
 8. V_{th} is applied to the complementary input when operating in single–ended mode.
 9. V_{IHD}, V_{ILD}, V_{ID}, and V_{CMR} parameters must be complied with simultaneously.

Table 5. AC CHARACTERISTICS $V_{CC} = 2.375 \text{ V}$ to 3.6 V, GND = 0 V, $T_A = -40 ^{\circ}\text{C}$ to 85°C (Note 10)

Symbol	Characteristic	Min	Тур	Max	Unit
f _{DATA}	Maximum Operating Input Data Rate	10	12		Gb/s
f _{INCLK}	Maximum Input Clock Frequency, V _{OUTPP} ≥ 200 mV	6	8		GHz
V _{OUTPP}	Output Voltage Amplitude (see Figures 2 and 5, Note 11) $f_{in} \leq 4 \text{ GHz} \\ f_{in} \leq 6 \text{ GHz}$	200 200	400 350		mV
V _{CMR}	Input Common Mode Range (Differential Configuration, Note 12, Figure 9)	600		V _{CC} – 50	mV
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential, IN/IN to Qn/Qn	100	160	250	ps
t _{PLH} TC	Propagation Delay Temperature Coefficient -40°C to +85°C		35		fs/°C
t _{DC}	Output Clock Duty Cycle f _{in} ≤ 6 GHz	45	49/51	55	%
t _{SKEW}	Duty Cycle Skew (Note 13) Within Device Skew (Note 14) Device to Device Skew (Note 15)		0.15 7 25	1 25 70	ps
[†] JITTER	Clock Jitter RMS, 1000 Cycles (Note 16) $f_{in} \le 6$ GHz Data Dependent Jitter (DDJ) (Note 17) ≤ 10 Gb/s		0.2 3	0.8 20	ps
V _{INPP}	Input Voltage Swing (Differential Configuration) (Note 18) (Figure 5)	100		1200	mV
t _r , t _f	Output Rise/Fall Times (20% - 80%) Qn, Qn	20	45	70	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- 10. Measured using a 400 mV source, 50% duty cycle 1 GHz clock source. All outputs must be loaded with external 50 Ω to V_{CC}. Input edge rates 40 ps (20% 80%).
- 11. Output voltage swing is a single-ended measurement operating in differential mode.
- 12. VIHD_{MIN} ≥ 1100 mV.
- 13. Duty cycle skew is measured between differential outputs using the deviations of the sum of T_{pw} and T_{pw} @ 1 GHz.
- 14. Within device skew compares coincident edges.
- 15. Device to device skew is measured between outputs under identical transition
- 16. Additive CLOCK jitter with 50% duty cycle clock signal.
- 17. Additive Peak-to-Peak jitter with input NRZ data at PRBS23.
- 18. Input voltage swing is a single-ended measurement operating in differential mode.

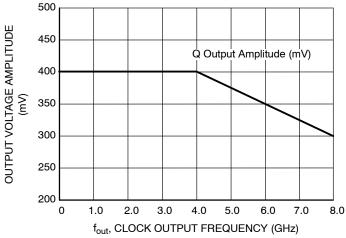


Figure 2. Output Voltage Amplitude (V_{OUTPP}) vs. Input Frequency (f_{in}) at Ambient Temperature (Typical)

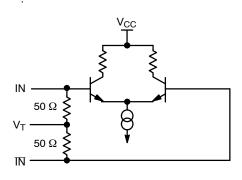
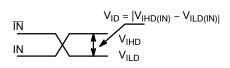



Figure 3. Input Structure

 $|N| = V_{IH}(IN) - V_{IL}(IN)$ $Q = V_{OUTPP} = V_{OH}(Q) - V_{OL}(Q)$ t_{PIH}

Figure 4. Differential Inputs Driven Differentially

Figure 5. AC Reference Measurement

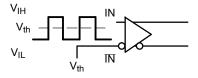


Figure 6. Differential Input Driven Single-Ended

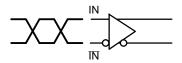


Figure 7. Differential Inputs Driven Differentially

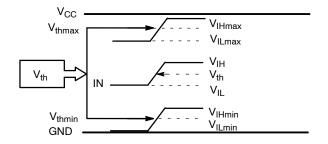


Figure 8. V_{th} Diagram

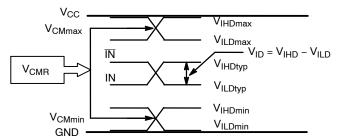


Figure 9. V_{CMR} Diagram

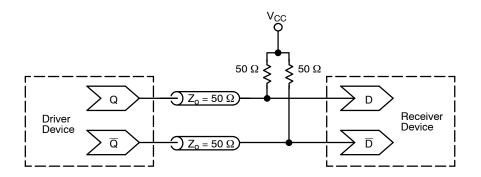


Figure 10. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8173/D</u>)

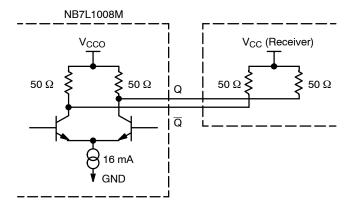


Figure 11. Typical CML Output Structure and Termination

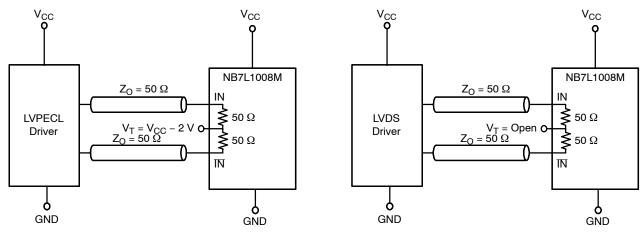


Figure 12. LVPECL Interface

Figure 13. LVDS Interface

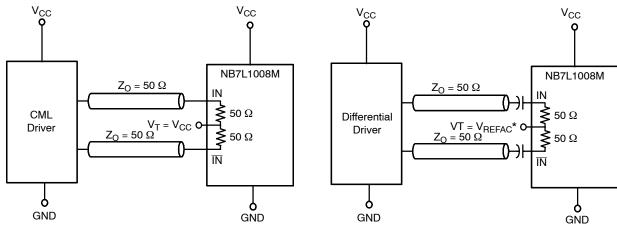


Figure 14. Standard 50 Ω Load CML Interface

Figure 15. Capacitor–Coupled
Differential Interface
(V_T Connected to V_{REFAC})

* V_{REFAC} bypassed to ground with a 0.01 μF capacitor

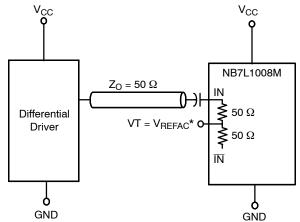
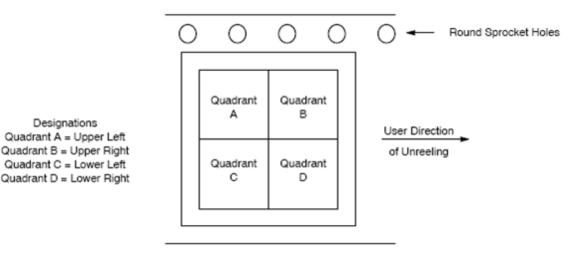
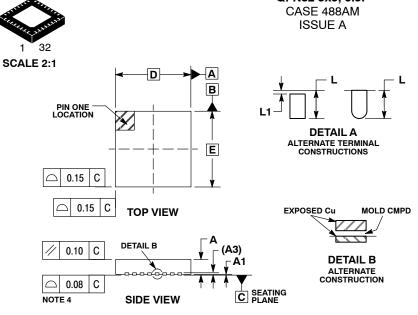
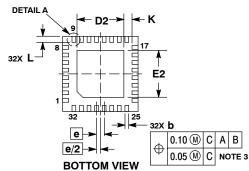


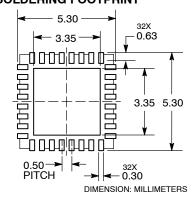
Figure 16. Capacitor-Coupled Single-Ended Interface (V_T Connected to V_{REFAC})




Figure 17. Tape and Reel Pin 1 Quadrant Orientation


ORDERING INFORMATION

Device	Package	Shipping
NB7L1008MMNG	QFN32 (Pb-Free)	74 Units / Tube
NB7L1008MMNR4G	QFN32 (Pb-Free)	1000 / Tape & Reel (Pin 1 Orientation in Quadrant B, Figure 17)

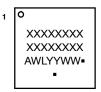

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

GigaComm is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and

QFN32 5x5, 0.5P


DATE 23 OCT 2013

NOTES:

- 1. DIMENSIONS AND TOLERANCING PER
- ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS.
- 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN
- 0.15 AND 0.30MM FROM THE TERMINAL TIP.
 COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS		
DIM	MIN MAX		
Α	0.80	1.00	
A1		0.05	
А3	0.20	REF	
b	0.18	0.30	
D	5.00 BSC		
D2	2.95	3.25	
E	5.00	BSC	
E2	2.95	3.25	
е	0.50 BSC		
K	0.20		
L	0.30	0.50	
L1	0.15		

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

= Assembly Location WL = Wafer Lot

= Year VV WW = Work Week = Pb-Free Package

(Note: Microdot may be in either loca-

_tion) *This information is generic. Please refer to device data sheet for actual part marking.

Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER	OO A ONIOCOOD	Electronic	versions	are	unc
* !	erence Manual, SOLDERRM/D.	ara			

DOCUMENT NUMBER:	98AON20032D	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	QFN32 5x5 0.5P		PAGE 1 OF 1

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

a Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T
NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX
ZL40226LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG
MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB6L11MMNG
NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG
HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK854BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7
ADCLK905BCPZ-WP