NB7L572

2.5V / 3.3V Differential 4:1 Mux Input to 1:2 LVPECL Clock/Data Fanout / Translator

Multi-Level Inputs w/ Internal Termination

The NB7L572 is a high performance differential 4:1 Clock/Data input multiplexer and a 1:2 LVPECL Clock/Data fanout buffer. The $\mathrm{INx} / \overline{\mathrm{INx}}$ inputs includes internal 50Ω termination resistors and will accept differential LVPECL, CML, or LVDS logic levels. The NB7L572 incorporates a pair of Select pins that will choose one of four differential inputs and will produce two identical LVPECL output copies of Clock or Data operating up to 7 GHz or $10 \mathrm{~Gb} / \mathrm{s}$, respectively. As such, NB7L572 is ideal for SONET, GigE, Fiber Channel, Backplane and other Clock/Data distribution applications.

The NB7L572 INx/ $\overline{\mathrm{INx}}$ inputs, outputs and core logic are powered by a $2.5 \mathrm{~V} \pm 5 \% \mathrm{~V}$ or $3.3 \mathrm{~V} \pm 10 \%$ power supply. The two differential LVPECL outputs will swing 750 mV when externally terminated with a 50Ω resistor to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$, and are optimized for low skew and minimal jitter.

The NB7L572 is offered in a low profile $5 \times 5 \mathrm{~mm} 32$-pin QFN Pb -free package. Application notes, models, and support documentation are available at www.onsemi.com.

The NB7L572 is a member of the GigaComm ${ }^{\text {TM }}$ family of high performance clock products.

Features

- Input Data Rate > $10.7 \mathrm{~Gb} / \mathrm{s}$ Typical
- Data Dependent Jitter < 15 ps
- Maximum Input Clock Frequency $>7 \mathrm{GHz}$ Typical
- Random Clock Jitter < 0.8 ps RMS
- Low Skew 1:2 LVPECL Outputs, < 15 ps max
- 4:1 Multi-Level Mux Inputs, Accepts LVPECL, CML LVDS
- 150 ps Typical Propagation Delay
- 45 ps Typical Rise and Fall Times
- Differential LVPECL Outputs, 750 mV Peak-to-Peak, Typical
- Operating Range: $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 3.6 V
- Internal 50Ω Input Termination Resistors
- VRefac Reference Output
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Ambient Operating Temperature
- These are $\mathrm{Pb}-$ Free Devices

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

Figure 1. Pinout Configuration (Top View)

Table 1. INPUT SELECT FUNCTION TABLE

SEL1 *	SEL0 *	Clock / Data Input Selected
0	0	INO Input Selected
0	1	IN1 Input Selected
1	0	IN2 Input Selected
1	1	IN3 Input Selected

[^0]NB7L572

Table 2. PIN DESCRIPTION

Pin	Name	1/0	Description
$\begin{gathered} 1,4 \\ 5,8 \\ 25,28 \\ 29,32 \end{gathered}$		LVPECL, CML, LVDS Input	Non-inverted, Inverted, Differential Clock or Data Inputs.
$\begin{gathered} 2,6 \\ 26,30 \end{gathered}$	$\begin{aligned} & \hline \text { VT0, VT1 } \\ & \text { VT2, VT3 } \end{aligned}$		Internal 100Ω Center-tapped Termination Pin for INx / INx
$\begin{aligned} & 15 \\ & 18 \end{aligned}$	$\begin{aligned} & \hline \text { SELO } \\ & \text { SEL1 } \end{aligned}$	LVTTL/LVCMOS Input	Input Select pins, default HIGH when left open through a $28 \mathrm{k}-\Omega$ pull-up resistor. Input logic threshold is $\mathrm{V}_{\mathrm{CC}} / 2$. See Select Function, Table 1.
14, 19	NC	-	No Connect
$\begin{aligned} & 10,13,16 \\ & 17,20,23 \end{aligned}$	VCC	-	Positive Supply Voltage. All V_{CC} pins must be connected to the positive power supply for correct DC and AC operation.
$\begin{aligned} & 11,12 \\ & 21,22 \end{aligned}$	$\begin{aligned} & \overline{\mathrm{QO}}, \mathrm{QO} \\ & \mathrm{Q1}, \mathrm{Q} 1 \end{aligned}$	LVPECL Output	Inverted, Non-inverted Differential Outputs.
9, 24	GND		Negative Supply Voltage, connected to Ground
$\begin{gathered} 3 \\ 7 \\ 27 \\ 31 \end{gathered}$	VREFACO VREFAC1 VREFAC2 VREFAC3	-	Output Voltage Reference for Capacitor-Coupled Inputs
-	EP	-	The Exposed Pad (EP) on the QFN-32 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is electrically connected to the die, and must be electrically connected to GND.

1. In the differential configuration when the input termination pins (VT0, VT1, V 2, $\mathrm{V} T 3$) are connected to a common termination voltage or left open, and if no signal is applied on $\mathrm{INx} / \mathrm{INx}$ input, then the device will be susceptible to self-oscillation.
2. All VCC, and GND pins must be externally connected to a power supply for proper operation.

Table 3. ATTRIBUTES

Characteristic	Value
ESD ProtectionHuman Body Model Machine Model	$>4 \mathrm{kV}$ $>150 \mathrm{~V}$
Input Pullup Resistor (ReU)	$28 \mathrm{k} \Omega$
Moisture Sensitivity (Note 3)	QFN32

3. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit	
V_{CC}	Positive Power Supply	GND $=0 \mathrm{~V}$		-0.5 to +4.0	V	
$\mathrm{V}_{\text {IN }}$	Positive Input Voltage	GND $=0 \mathrm{~V}$		-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\text {INPP }}$	Differential Input Voltage \|IN - IN				1.89	V
$\mathrm{I}_{\text {out }}$	LVPECL Output Current	Continuous Surge		$\begin{aligned} & \hline 50 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
I_{N}	Input Current Through RT (50 Ω Resistor)			± 40	mA	
$\mathrm{T}_{\text {A }}$	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$	
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 4)	$\begin{aligned} & 0 \text { Ifpm } \\ & 500 \text { lfpm } \end{aligned}$	$\begin{aligned} & \text { QFN-32 } \\ & \text { QFN-32 } \end{aligned}$	$\begin{aligned} & \hline 31 \\ & 27 \end{aligned}$	$\begin{aligned} & \hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case) (Note 4)		QFN-32	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
$\mathrm{T}_{\text {sol }}$	Wave Solder	$\leq 20 \mathrm{sec}$		265	${ }^{\circ} \mathrm{C}$	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
4. JEDEC standard multilayer board - 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 5. DC CHARACTERISTICS POSITIVE LVPECL OUTPUT $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 6)

Symbol	Characteristic	Min	Typ	Max	Unit
POWER SUPPLY					
$\mathrm{V}_{\text {cc }}$	Power Supply Voltage $\begin{gathered} \\ V_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}\end{gathered}$	$\begin{gathered} 2.375 \\ 3.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 3.3 \end{aligned}$	$\begin{gathered} 2.625 \\ 3.6 \end{gathered}$	V
I_{CC}	Power Supply Current for V_{CC} (Inputs and Outputs Open)		90	110	mA

LVPECL OUTPUTS

V_{OH}	Output HIGH Voltage (Note 6)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-1145 \\ 1355 \\ 2155 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-900 \\ 1600 \\ 2400 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-825 \\ 1675 \\ 2475 \end{gathered}$	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 6)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-2000 \\ 500 \\ 1300 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-1700 \\ 800 \\ 1600 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-1500 \\ 1000 \\ 1800 \end{gathered}$	mV

DIFFERENTIAL CLOCK INPUTS DRIVEN SINGLE-ENDED (Figures 4 \& 6) (Note 7)

V_{IH}	Single-Ended Input HIGH Voltage	$\mathrm{V}_{\mathrm{th}}+100$		$\mathrm{~V}_{\mathrm{CC}}$	mV
V_{IL}	Single-Ended Input LOW Voltage	GND		$\mathrm{V}_{\mathrm{th}}-100$	mV
V_{th}	Input Threshold Reference Voltage Range (Note 8)	1100		$\mathrm{~V}_{\mathrm{CC}}-100$	mV
$\mathrm{V}_{\text {ISE }}$	Single-Ended Input Voltage $\left(\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\mathrm{IL}}\right)$	200		2400	mV

VREFAC

$\mathrm{V}_{\text {REF-AC }}$	Output Reference Voltage (100 $\mu \mathrm{A}$ Load)	$\mathrm{V}_{\mathrm{CC}}-1500$	$\mathrm{~V}_{\mathrm{CC}}-1200$	$\mathrm{~V}_{\mathrm{CC}}-1000$	mV

DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 5 \& 7) (Note 9)

$\mathrm{V}_{\text {IHD }}$	Differential Input HIGH Voltage (IN, IN)	1200		$\mathrm{~V}_{\mathrm{CC}}$	mV
$\mathrm{V}_{\text {ILD }}$	Differential Input LOW Voltage (IN, IN)	0		$\mathrm{~V}_{\text {IHD }}-100$	mV
$\mathrm{V}_{\text {ID }}$	Differential Input Voltage (IN, IN) (V $\left.\mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}\right)$	100		1200	mV
$\mathrm{V}_{\mathrm{CMR}}$	Input Common Mode Range (Differential Configuration, Note 10) (Figure 8)	800		$\mathrm{~V}_{\mathrm{CC}}-50$	mV
I_{IH}	Input HIGH Current IN/IN (VT IN/VT IN Open)	-150		150	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current IN/IN (VT IN/VT IN Open)	-150		150	$\mu \mathrm{~A}$

CONTROL INPUT (SELx Pin)

V_{IH}	Input HIGH Voltage for Control Pin	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input LOW Voltage for Control Pin	GND		0.8	V
I_{IH}	Input HIGH Current			40	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current	-215		0	$\mu \mathrm{~A}$

TERMINATION RESISTORS

$\mathrm{R}_{\text {TIN }}$	Internal Input Termination Resistor (Measured from INx to VTx)	45	50	55	Ω

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
5. Input and Output parameters vary $1: 1$ with V_{CC}.
6. LVPECL outputs loaded with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$ for proper operation.
7. Vth, $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\text {IL }}$, and $\mathrm{V}_{\text {ISE }}$ parameters must be complied with simultaneously.
8. Vth is applied to the complementary input when operating in single-ended mode.
9. $\mathrm{V}_{I H D}, \mathrm{~V}_{I L D}, \mathrm{~V}_{I D}$ and $\mathrm{V}_{\mathrm{CMR}}$ parameters must be complied with simultaneously.
10. $\mathrm{V}_{\text {CMR }}$ min varies $1: 1$ with $\mathrm{GND}, \mathrm{V}_{\mathrm{CMR}}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\mathrm{CMR}}$ range is referenced to the most positive side of the differential input signal.

Table 6. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 3.6 V , $\mathrm{GND}=0 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 11)

Symbol	Characteristic		Min	Typ	Max	Unit
$\mathrm{f}_{\text {MAX }}$	Maximum Input Clock Frequency $\mathrm{V}_{\text {OUT }} \geq 400 \mathrm{mV}$		7	8		GHz
fiatamax	Maximum Operating Data Rate NRZ, (PRBS23)		10	11		Gbps
V OUTPP	Output Voltage Amplitude (@ $\mathrm{V}_{\text {INPPmin }}$) (Figure 2 \& 9) (Note 12)		$\begin{aligned} & 550 \\ & 400 \end{aligned}$	$\begin{aligned} & 750 \\ & 500 \end{aligned}$		mV
$\begin{aligned} & \text { tpLH, } \\ & \text { tPHL } \end{aligned}$	Propagation Delay to Differential Outputs Measured at Differential Cross-Point	@ $1 \mathrm{GHz} \operatorname{INx} / \mathrm{INx}$ to $\mathrm{Qx} / \mathrm{Qx}$ (Figure 9) @ 50 MHz SELx to Qx (Figure 10)	$\begin{aligned} & 125 \\ & 300 \end{aligned}$	150	$\begin{gathered} 175 \\ 1000 \end{gathered}$	ps
tpD Tempco	Differential Propagation Delay Temperature Coefficient			115		fs $/{ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\text {skew }}$	$\begin{array}{\|l} \hline \text { Output - Output skew (within device) (Note 13) } \\ \text { Device - Device skew (tpd max - tpd min) } \end{array}$			0	$\begin{aligned} & \hline 10 \\ & 50 \end{aligned}$	ps
$t_{\text {DC }}$	Output Clock Duty Cycle (Reference Duty Cycle = 50\%)		45	50	55	\%
$\mathrm{t}_{\text {IITTER }}$	Additive Random Clock Jitter, RJ(RMS) (Note 14) $\mathrm{f}_{\text {in }} \leq 7.0 \mathrm{GHz}$ Data Dependent Jitter, DDJ (Note 15) $\mathrm{f}_{\mathrm{in}} \leq 10 \mathrm{Gbps}$			$\begin{gathered} 0.5 \\ 6 \end{gathered}$	$\begin{aligned} & 0.8 \\ & 15 \end{aligned}$	ps rms ps pk-pk
$\mathrm{V}_{\text {INPP }}$	Input Voltage Swing (Differential Configuration) (Note 16)		100		1200	mV
$\mathrm{t}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall Times @ 1 GHz ; (20\%-80\%), $\mathrm{V}_{\mathrm{IN}}=800 \mathrm{mV} \mathrm{Q}, \overline{\mathrm{Q}}$		25	45	65	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
11. Measured using a $100 \mathrm{mVpk}-\mathrm{pk}$ source, 50% duty cycle clock source. All output loading with external 50Ω to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$. Input edge rates $40 \mathrm{ps}(20 \%-80 \%)$.
12. Output voltage swing is a single-ended measurement operating in differential mode.
13. Skew is measured between outputs under identical transitions and conditions. Duty cycle skew is defined only for differential operation when the delays are measured from cross-point of the inputs to the cross-point of the outputs.
14. Additive RMS jitter with 50% duty cycle clock signal.
15. Additive Peak-to-Peak data dependent jitter with input NRZ data at K28.5.
16. Input voltage swing is a single-ended measurement operating in differential mode.

Figure 2. CLOCK Output Voltage Amplitude (V ${ }_{\text {OUTPP }}$) / RMS Jitter vs. Input Frequency ($\mathrm{f}_{\text {in }}$) at Ambient Temperature (typical)

Figure 3. Input Structure

Figure 4. Differential Input Driven Single-Ended

Figure 6. $\mathbf{V}_{\text {th }}$ Diagram

Figure 8. $\mathrm{V}_{\mathrm{CMR}}$ Diagram

Figure 5. Differential Inputs Driven Differentially

Figure 7. Differential Inputs Driven Differentially

Figure 9. AC Reference Measurement

Figure 10. SELx to Qx Timing Diagram

Figure 11. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)

Figure 14. Standard 50Ω Load CML Interface

Figure 15. Capacitor-Coupled Differential Interface (VT Connected to V REFAC)

* $\mathrm{V}_{\text {REFAC }}$ bypassed to ground with a $0.01 \mu \mathrm{~F}$ capacitor

Figure 16. Capacitor-Coupled Single-Ended Interface
(VT Connected to External $\mathrm{V}_{\text {REFAC }}$)

ORDERING INFORMATION

Device	Package	Shipping †
NB7L572MNG	QFN32 (Pb-Free)	79 Units / Rail
NB7L572MNR4G	QFN32 (Pb-Free)	$1000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

QFN32 5x5, 0.5P
CASE 488AM ISSUE A

DATE 23 OCT 2013
SCALE 2:1

1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.30MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.80	1.00
A1	---	0.05
A3	0.20 REF	
b	0.18	0.30
D	5.00 BSC	
D2	2.95	3.25
E	5.00 BSC	
E2	2.95	3.25
e	0.50 BSC	
K	0.20	---
L	0.30	0.50
L1	---	0.15

GENERIC
MARKING DIAGRAM*

1 | 0 |
| :---: |
| XXXXXXXX |
| XXXXXXXX |
| AWLYYWW: |
| \cdot |

XXXXX = Specific Device Code
A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week

- = Pb-Free Package

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-F r e e$ strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
(Note: Microdot may be in either loca-
*+ifn) information is generic. Please refer to device data sheet for actual part marking.
Pb-Free indicator, " G " or microdot " \quad ", may or may not be present.

| DOCUMENT NUMBER: | 98AON20032D | Electronic versions are uncontrolled except when accessed directly from the Document Repositiory.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | QFN32 5x5 0.5P | PAGE 1 OF 1 |

[^1] ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C EC4P-221-MRXD1 6EP1332-1SH71 6ES7211-1AE40-0XB0 6ES7223-1PH32-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B HMC6832ALP5LE CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805EQGI 49FCT805CTQG 74FCT3807ASOG 74FCT3807EQGI 74FCT388915TEPYG 853S012AKILF 853S013AMILF 853S058AGILF 8V79S680NLGI ISPPAC-CLK5312S-01TN48I

[^0]: *Defaults HIGH when left open.

[^1]: ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.

