NB7V52M

D Flip Flop, $1.8 \mathrm{~V} / 2.5 \mathrm{~V}$ Differential, with Reset and CML Outputs

Multi-Level Inputs w/ Internal Termination

Description

The NB7V52M is a 10 GHz differential D_flip-flop with a differential asynchronous Reset. The differential D/D, CLK/CLK and R / R inputs incorporate dual internal 50Ω termination resistors and will accept LVPECL, CML, LVDS logic levels.

When Clock transitions from logic Low to High, Data will be transferred to the differential CML outputs. The differential Clock inputs allow the NB7V52M to also be used as a negative edge triggered device.

The 16 mA differential CML outputs provide matching internal 50Ω termination and produce 400 mV output swings when externally receiver terminated with a 50Ω resistor to V_{CC}.

The NB7V52M is offered in a low profile $3 \mathrm{~mm} \times 3 \mathrm{~mm} 16$-pin QFN package. The NB7V52M is a member of the GigaComm ${ }^{\text {TM }}$ family of high performance clock products. Application notes, models, and support documentation are available at www.onsemi.com.

Features

- Maximum Input Clock Frequency > 10 GHz
- Maximum Input Data Rate $>10 \mathrm{~Gb} / \mathrm{s}$
- Random Clock Jitter < 0.8 ps RMS, Max
- 200 ps Typical Propagation Delay
- 35 ps Typical Rise and Fall Times
- Differential CML Outputs, 400 mV Peak-to-Peak, Typical
- Operating Range: $\mathrm{V}_{\mathrm{CC}}=1.71 \mathrm{~V}$ to 2.625 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
- Internal 50Ω Input Termination Resistors
- QFN-16 Package, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Ambient Operating Temperature
- These are $\mathrm{Pb}-$ Free Devices

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

(Note: Microdot may be in either location)
*For additional marking information, refer to Application Note AND8002/D.

Figure 1. Logic Diagram

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

NB7V52M

Table 1. INPUT/OUTPUT SELECT TRUTH TABLE

\mathbf{R}	\mathbf{D}	CLK	Q
H	x	x	L
L	L	Z	L
L	H	Z	H

$\mathrm{Z}=$ LOW to HIGH Transition
$\mathrm{x}=$ Don't care

Figure 2. Pin Configuration (Top View)

Table 1. Pin Description

Pin	Name	1/0	Description
1	VTD	-	Internal 50Ω Termination Pin for D
2	D	LVPECL, CML, LVDS Input	Noninverted Differential Data Input. (Note 1)
3	D	$\begin{aligned} & \text { LVPECL, CML, } \\ & \text { LVDS Input } \end{aligned}$	Inverted Differential Data Input. (Note 1)
4	VTD	-	Internal 50Ω Termination Pin for D
5	VTCLK	-	Internal 50Ω Termination Pin for CLK
6	CLK	LVPECL, CML, LVDS Input	Noninverted Differential Clock Input. (Note 1)
7	CLK	LVPECL, CML, LVDS Input	Inverted Differential Clock Input. (Note 1)
8	VTCLK	-	Internal 50Ω Termination Pin for CLK
9	VEE	-	Negative Supply Voltage. (Note 2)
10	\bar{Q}	CML Output	Inverted Differential Output
11	Q	CML Output	Noninverted Differential Output
12	VCC	-	Positive Supply Voltage. (Note 2)
13	VTR	-	Internal 50Ω Termination Pin for R
14	R	LVPECL, CML, LVDS Input	Noninverted Asynchronous Differential Reset Input. (Note 1)
15	$\overline{\mathrm{R}}$	LVPECL, CML, LVDS Input	Inverted Asynchronous Differential Reset Input. (Note 1)
16	VTR	-	Internal 50Ω Termination Pin for $\overline{\mathrm{R}}$
-	EP	-	The Exposed Pad (EP) on the QFN-16 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is electrically connected to the die, and must be electrically and thermally connected to VEE on the PC board.

1. In the differential configuration when the input termination pins ($\mathrm{VTx}, \overline{\mathrm{VTx}}$) are connected to a common termination voltage or left open, and if no signal is applied on CLK/CLK input, then the device will be susceptible to self-oscillation.
2. All VCC and VEE pins must be externally connected to a power supply for proper operation.

NB7V52M

Table 2. ATTRIBUTES

Characteristics	Value	
ESD Protection	Human Body Model Machine Model	$>2 \mathrm{kV}$ $>200 \mathrm{~V}$
Moisture Sensitivity	$16-$ QFN	Level 1
Flammability Rating	Oxygen Index: 28 to 34	UL $94 \mathrm{~V}-0$ @ 0.125 in
Transistor Count	173	
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test		

For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
$\mathrm{V}_{\text {CC }}$	Positive Power Supply	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		3.0	V
V_{10}	Positive Input/Output Voltage	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	$-0.5 \leq \mathrm{VIO} \leq \mathrm{VCC}+0.5$	-0.5 to $\mathrm{V}_{\text {CC }}+0.5$	V
$\mathrm{V}_{\text {INPP }}$	$\begin{aligned} & \text { Differential Input Voltage \|CLK - } \overline{C L K}\|,\|D-\bar{D}\| \text {, } \\ & \|R-\bar{R}\| \end{aligned}$			1.89	V
Iout	Output Current Through R ${ }_{\text {TOUT }}$ (50Ω Resistor)	Continuous Surge		$\begin{aligned} & 34 \\ & 40 \end{aligned}$	mA
I_{N}	Input Current Through R ${ }_{\text {TIN }}$ (50 Ω Resistor)			± 40	mA
T_{A}	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient) (Note 3)	0 lfpm 500 lfpm	QFN-16 QFN-16	$\begin{aligned} & 42 \\ & 35 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case) (Note 3)		QFN-16	4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder Pb-Free			265	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
3. JEDEC standard multilayer board - 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 4. DC CHARACTERISTICS, Multi-Level Inputs $\mathrm{V}_{\mathrm{CC}}=1.71 \mathrm{~V}$ to $2.625 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 4)

Symbol Characteristic Min Typ Max Unit
POWER SUPPLY CURRENT

CML OUTPUTS

V_{OH}	Output HIGH Voltage (Note 5)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-30 \\ 2470 \\ 1770 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-10 \\ 2490 \\ 1790 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & 2500 \\ & 1800 \end{aligned}$	mV
V_{OL}	Output LOW Voltage (Note 5)	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-650 \\ 1850 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-500 \\ 2000 \end{gathered}$	$\begin{gathered} \mathrm{V}_{C C}-400 \\ 2100 \end{gathered}$	mV
		$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-600 \\ 1200 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-450 \\ 1350 \end{gathered}$	$\begin{gathered} \mathrm{V}_{C C}-350 \\ 1450 \end{gathered}$	

DIFFERENTIAL CLOCK INPUTS DRIVEN SINGLE-ENDED (Note 6) (Figures 5 and 7)

$\mathrm{V}_{\text {th }}$	Input Threshold Reference Voltage Range (Note 7)	1000		$\mathrm{~V}_{\mathrm{CC}}-100$	mV
V_{IH}	Single-Ended Input HIGH Voltage	$\mathrm{V}_{\text {th }}+100$		$\mathrm{~V}_{\mathrm{CC}}$	mV
V_{IL}	Single-Ended Input LOW Voltage	V_{EE}		$\mathrm{V}_{\mathrm{th}}-100$	mV
$\mathrm{V}_{\text {ISE }}$	Single-Ended Input Voltage $\left(\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\mathrm{IL}}\right)$	200		1200	mV

DIFFERENTIAL D/D, CLK/CLK, R/R INPUTS DRIVEN DIFFERENTIALLY (Figures 6 and 8) (Note 8)

$\mathrm{V}_{\mathrm{IHD}}$	Differential Input HIGH Voltage	1100		$\mathrm{~V}_{\mathrm{CC}}$	mV
$\mathrm{V}_{\mathrm{ILD}}$	Differential Input LOW Voltage	V_{EE}		$\mathrm{V}_{\mathrm{CC}}-100$	mV
V_{ID}	Differential Input Voltage ($\left.\mathrm{V}_{\mathrm{IHD}}-\mathrm{V}_{\mathrm{ILD}}\right)$	100		1200	mV
$\mathrm{V}_{\mathrm{CMR}}$	Input Common Mode Range (Differential Configuration, Note 9) (Figure 10)	1050		$\mathrm{~V}_{\mathrm{CC}}-50$	mV
I_{IH}	Input HIGH Current $\left(\mathrm{VT}_{\mathrm{x}} / \mathrm{VT}_{\mathrm{x}}\right.$ Open)	-250		250	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current $\left(\mathrm{VT}_{x} / \mathrm{VT}_{\mathrm{x}}\right.$ Open)	-250		250	$\mu \mathrm{~A}$

TERMINATION RESISTORS

$R_{\text {TIN }}$	Internal Input Termination Resistor	45	50	55	Ω
$R_{\text {TOUT }}$	Internal Output Termination Resistor	45	50	55	Ω

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
4. Input and output parameters vary $1: 1$ with V_{CC}.
5. CML outputs loaded with 50Ω to V_{CC} for proper operation.
6. $\mathrm{V}_{\mathrm{th}}, \mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\text {IL }}$, and $\mathrm{V}_{\text {ISE }}$ parameters must be complied with simultaneously.
7. $\mathrm{V}_{\text {th }}$ is applied to the complementary input when operating in single-ended mode.
8. $\mathrm{V}_{I H D}, \mathrm{~V}_{I L D}, \mathrm{~V}_{I D}$ and $\mathrm{V}_{\mathrm{CMR}}$ parameters must be complied with simultaneously.
9. $\mathrm{V}_{\mathrm{CMR}}$ min varies $1: 1$ with $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{CMR}}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\mathrm{CMR}}$ range is referenced to the most positive side of the differential input signal.

Table 5. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=1.71 \mathrm{~V}$ to $2.625 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Note 10)

Symbol	Characteristic		Min	Typ	Max	Unit
$\mathrm{f}_{\text {MAX }}$	Maximum Input Clock Frequency		10	12		GHz
$f_{\text {DATA MAX }}$	Maximum Input Data Rate (PRBS23)		10	12		Gbps
V OUTPP	Output Voltage Amplitude (@ $\left.V_{\text {INPPmin }}\right)$ fin $\leq 7 \mathrm{GHz}$ (See Figures 3 and 10, Note 11) fin $\leq 10 \mathrm{GHz}$		$\begin{aligned} & 300 \\ & 250 \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \end{aligned}$		mV
$\begin{aligned} & \text { tpLH, } \\ & \text { tPHL } \end{aligned}$	Propagation Delay to Differential Outputs, @ 1 GHz, Measured at Differential Cross-point	CLK/CLK to Q/Q R / R to Q / Q		$\begin{aligned} & 200 \\ & 300 \end{aligned}$	$\begin{aligned} & \hline 350 \\ & 600 \end{aligned}$	ps
ts	Setup Time (D to CLK)		40	15		ps
t_{H}	Hold Time (D to CLK)		50	20		ps
t_{RR}	Reset Recovery		275	200		ps
tPW	Minimum Pulse Width	R / R	1			ns
t JITTER	RJ - Output Random Jitter (Note 12)	$\mathrm{fin} \leq 10 \mathrm{GHz}$		0.2	0.8	ps RMS
$\mathrm{V}_{\text {INPP }}$	Input Voltage Swing (Differential Configuration) (Note		100		1200	mV
$\mathrm{tr}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall Times @ 1 GHz (20\% - 80\%),	Q, \bar{Q}	20	35	50	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
10. Measured using a $400 \mathrm{mV} \mathrm{V}_{\text {INPP }}$ source, 50% duty cycle clock source. All output loading with external 50Ω to V_{Cc}. Input edge rates $\geq 40 \mathrm{ps}(20 \%-80 \%)$.
11. Output voltage swing is a single-ended measurement operating in differential mode.
12. Additive RMS jitter with 50% duty cycle clock signal.
13. Input voltage swing is a single-ended measurement operating in differential mode.

Figure 3. Clock Output Voltage Amplitude ($\mathrm{V}_{\text {OUTPP }}$) vs. Input Frequency $\left(\mathrm{f}_{\mathrm{in}}\right)$ at Ambient Temperature (Typ)

Figure 4. Simplified Input Structure

Figure 5. Differential Input Driven Single-Ended

Figure 7. $\mathrm{V}_{\text {th }}$ Diagram

Figure 9. $\mathrm{V}_{\mathrm{CMR}}$ Diagram

Figure 6. Differential Inputs Driven Differentially

Figure 8. Differential Inputs Driven Differentially

Figure 10. AC Reference Measurement

NB7V52M

Figure 11. Typical CML Output Structure and Termination

Figure 12. Typical Termination for CML Output Driver and Device Evaluation

Figure 13. LVPECL Interface

Figure 14. LVDS Interface

Figure 15. Standard 50Ω Load CML Interface

Figure 16. Capacitor-Coupled Differential Interface ($\mathrm{V}_{\mathrm{T}} / \mathbf{V}_{\mathrm{T}}$ Connected to External $\mathrm{V}_{\text {REFAC }}$; $\mathrm{V}_{\text {REFAC }}$ Bypassed to Ground with $0.1 \mu \mathrm{~F}$ Capacitor)

Figure 17. Capacitor-Coupled Single-Ended Interface ($\mathrm{V}_{\mathrm{T}} / \mathrm{V}_{\mathrm{T}}$ Connected to External $\mathrm{V}_{\text {REFAC }}$; $\mathrm{V}_{\text {REFAC }}$ Bypassed to Ground with $0.1 \mu \mathrm{~F}$ Capacitor)

NB7V52M

ORDERING INFORMATION

Device	Package	Shipping †
NB7V52MMNG	QFN-16 (Pb-free)	123 Units / Rail
NB7V52MMNHTBG	QFN-16 (Pb-free)	$100 /$ Tape \& Reel
NB7V52MMNTXG	QFN-16 (Pb-free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

QFN16 3x3, 0.5P
CASE 485G
ISSUE G
DATE 08 OCT 2021

side view

battam View

Nates:

1. DIMENSIDNING AND TDLERANCING PER ASME Y14.5M, 1994.
2. CDNTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIDN b APPLIES TD PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FREM THE TERMINAL TIP.
4. CDPLANARITY APPLIES TD THE EXPOSED PAD AS WELL AS. THE TERMINALS.

DETAIL B
${ }^{\text {ALTERNATE }}$

DETAIL A
ALTERNATE TERMINAL
constructions

DIM	MILLIMETERS				
	MIN.	NDM.	MAX.		
A	0.80	0.90	1.00		
A1	0.00	0.03	0.05		
A3	0.20 REF				
b	0.18	0.24			
D	3.00 BSC				
D2	1.65	1.75			1.85
E	3.00 BSC				
E2	1.65	1.75	1.85		
e	0.50 BSC				
k	0.18 TYP				
L	0.30	0.40	0.50		
L1	0.00	0.08	0.15		

GENERIC MARKING DIAGRAM*

${ }^{\circ}$ XXXXX
XXXXX
ALYW:
\bullet

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- $\quad=$ Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " \quad ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON04795D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | QFN16 3X3, 0.5P | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip-Flops category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLV14027BDG NLX1G74MUTCG 703557B 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA NTE4598B 74LVC74APW-Q100J 74LCX16374MTDX 74LVT74D, 118 74VHCT9273FT(BJ) MM74HC374WM MM74HC74AMX 74LVX74MTCX CD40174BF3A HMC723LC3CTR MM74HCT574MTCX 5962-8681501RA MM74HCT273WM SN74LVC74APW SN74LVC74AD SN74HC273DWR MC74HC11ADG M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74VHCV374FT(BJ) 74VHCV574FT(BJ) SNJ54ALS574BJ SN74LVC74ADR SN74HC574PWR SN74HC374AN SN74AS574DWR SN74ALS175NSR SN74HC175D SN74AC74D 74AHC1G79GV.125 74AHC74D.112 74HC112D.652 74HC574D.652 74HCT173D. 652 74HCT374D. 652 74AHC574D. 118 74AHCT1G79GW. 125 74HC273D.652 74HC74D.653 74HC107D. 652

