NB7V586M

1.8V Differential 2:1 Mux Input to 1.2V/1.8V 1:6 CML Clock/Data Fanout Buffer / Translator

Multi-Level Inputs w/ Internal Termination

Description

The NB7V586M is a differential 1-to-6 CML Clock/Data Distribution chip featuring a 2:1 Clock/Data input multiplexer with an input select pin. The $\operatorname{INx} / \overline{I N X}$ inputs incorporate internal 50Ω termination resistors and will accept differential LVPECL, CML, or LVDS logic levels (see Figure 12). The $\mathrm{INx} / \overline{\mathrm{INx}}$ inputs and core logic are powered with a 1.8 V supply. The NB7V586M produces six identical differential CML output copies of Clock or Data. The outputs are configured as three banks of two differential pair. Each bank (or all three banks) have the flexibility of being powered by any combination of either a 1.8 V or 1.2 V supply.

The 16 mA differential CML output structure provides matching internal 50Ω source terminations and 400 mV output swings when externally terminated with a 50Ω resistor to $\mathrm{V}_{\text {CCOX }}$ (see Figure 11).
The 1:6 fanout design was optimized for low output skew and minimal jitter and is ideal for SONET, GigE, Fiber Channel, Backplane and other Clock/Data distribution applications operating up to 6 GHz or $10 \mathrm{~Gb} / \mathrm{s}$ typical. The $\mathrm{V}_{\text {REFAC }}$ reference outputs can be used to rebias capacitor-coupled differential or single-ended input signals.
The NB7V586M is offered in a low profile $5 \times 5 \mathrm{~mm} 32$-pin Pb-Free QFN package. Application notes, models, and support documentation are available at www.onsemi.com.
The NB7V586M is a member of the GigaComm ${ }^{\text {TM }}$ family of high performance clock products.

Features

- Maximum Input Data Rate > $10 \mathrm{~Gb} / \mathrm{s}$ Typical
- Data Dependent Jitter < 10 ps
- Maximum Input Clock Frequency $>6 \mathrm{GHz}$ Typical
- Random Clock Jitter < 0.8 ps RMS, Max
- Low Skew 1:6 CML Outputs, 20 ps Max
- 2:1 Multi-Level Mux Inputs
- 175 ps Typical Propagation Delay
- 50 ps Typical Rise and Fall Times
- Differential CML Outputs, 330 mV Peak-to-Peak, Typical
- Operating Range: $\mathrm{V}_{\mathrm{CC}}=1.71 \mathrm{~V}$ to 1.89 V
- Operating Range: $\mathrm{V}_{\mathrm{CCO}}=1.14 \mathrm{~V}$ to 1.89 V
- Internal 50Ω Input Termination Resistors
- V Refac Reference Output
- QFN32 Package, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Ambient Operating Temperature
- These are $\mathrm{Pb}-$ Free Devices

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

SIMPLIFIED LOGIC DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Table 1. INPUT SELECT FUNCTION TABLE

SEL*	CLK Input Selected
0	IN0
1	IN1

*Defaults HIGH when left open.

Figure 1. 32-Lead QFN Pinout (Top View)
Table 2. PIN DESCRIPTION

Pin	Name	1/0	Description
$\begin{aligned} & 1,4 \\ & 5,8 \end{aligned}$	INO, INO IN1, IN1	LVPECL, CML, LVDS Input	Non-inverted, Inverted, Differential Inputs
2,6	VT0, VT1		Internal 100Ω Center-tapped Termination Pin for INO/IN0 and IN1//N1
31	SEL	LVTTL/LVCMOS Input	Input Select pin; LOW for INO Inputs, HIGH for IN1 Inputs; defaults HIGH when left open
10	NC	-	No Connect
30	VCC	-	1.8 V Positive Supply Voltage for the Inputs and Core Logic.
25	VCCO1		1.2 V or 1.8 V Positive Supply Voltage for the Q0, प0, Q1, $\overline{\text { Q1 CML Outputs }}$
18, 23	VCCO2	-	1.2 V or 1.8 V Positive Supply Voltage for the Q2, Q2, Q3, Q3 CML Outputs
11, 16	VCCO3		1.2 V or 1.8 V Positive Supply Voltage for the Q4, Q4, Q5, Q5 CML Outputs
$\begin{aligned} & 29,28 \\ & 27,26 \end{aligned}$	$\begin{aligned} & \text { Q0, } \overline{\mathrm{QO}} \\ & \mathrm{Q} 1, \mathrm{Q} 1 \end{aligned}$	1.2 V or 1.8 V CML Output	Non-inverted, Inverted Differential Outputs; powered by VCCO1 (Notes 1 and 2).
$\begin{aligned} & 22,21 \\ & 20,19 \end{aligned}$	$\begin{aligned} & \text { Q2, } \overline{\text { Q2 }} \\ & \text { Q3, } \mathrm{Q} 3 \end{aligned}$	1.2 V or 1.8 V CML Output	Non-inverted, Inverted Differential Outputs; powered by VCCO2 (Notes 1 and 2).
$\begin{aligned} & 15,14 \\ & 13,12 \end{aligned}$	$\begin{aligned} & \text { Q4, } \overline{\text { Q4 }} \\ & \text { Q5, } \overline{\text { Q5 }} \end{aligned}$	1.2 V or 1.8 V CML Output	Non-inverted, Inverted Differential Outputs; powered by VCCO3 (Notes 1 and 2).
$\begin{aligned} & 9,17, \\ & 24,32 \end{aligned}$	GND		Negative Supply Voltage, connected to Ground
$\begin{aligned} & 3 \\ & 7 \end{aligned}$	VREFACO VREFAC1	-	Output Voltage Reference for Capacitor-Coupled Inputs, only
-	EP	-	The Exposed Pad (EP) on the QFN-32 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is electrically connected to the die, and must be electrically and thermally connected to GND on the PC board.

1. In the differential configuration when the input termination pins (VTO, VT1) are connected to a common termination voltage or left open, and if no signal is applied on $\mathrm{INn} / \mathrm{INn}$ input, then, the device will be susceptible to self-oscillation. $\mathrm{Qn} / \mathrm{Qn}^{\text {n }}$ outputs have internal 50Ω source termination resistors.
2. All V_{CC}, VCCOx and GND pins must be externally connected to a power supply for proper operation.

Table 3. ATTRIBUTES

Characteristics	Value
ESD ProtectionHuman Body Model Machine Model	$\begin{aligned} & >2 \mathrm{kV} \\ & >200 \mathrm{~V} \end{aligned}$
Input Pullup Resistor (RPu)	$75 \mathrm{k} \Omega$
Moisture Sensitivity (Note 3)	Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	308
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

3. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
$\mathrm{V}_{\text {CC }}$	Positive Power Supply	GND $=0 \mathrm{~V}$		3.0	V
$\mathrm{V}_{\text {ccox }}$	Positive Power Supply	GND $=0 \mathrm{~V}$		3.0	V
V_{10}	Input/Output Voltage	GND $=0 \mathrm{~V}$	$-0.5 \leq \mathrm{V}_{\mathrm{IO}} \leq \mathrm{V}_{\mathrm{CC}}+0.5$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {INPP }}$	Differential Input Voltage $\left\|1 N_{x}-\mathbb{N}_{x}\right\|$			1.89	V
I_{IN}	Input Current Through $\mathrm{R}_{\mathrm{T}}(50 \Omega$ Resistor)			± 40	mA
Iout	Output Current	Continuous Surge		$\begin{aligned} & 34 \\ & 40 \end{aligned}$	mA
IVfrefac	VREFAC Sink/Source Current			± 1.5	mA
$\mathrm{T}_{\text {A }}$	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 4)	0 lfpm 500 lfpm	QFN-32 QFN-32	$\begin{aligned} & 31 \\ & 27 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
θ_{Jc}	Thermal Resistance (Junction-to-Case) (Note 4)	Standard Board	QFN-32	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder Pb-Free			265	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
4. JEDEC standard multilayer board - 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 5. DC CHARACTERISTICS - CML OUTPUT $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CCO} 1}=1.2 \mathrm{~V} \pm 5 \%$ or $1.8 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CCO} 2}=1.2 \mathrm{~V} \pm 5 \%$ or $1.8 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CCO}}=1.2 \mathrm{~V} \pm 5 \%$ or $1.8 \mathrm{~V} \pm 5 \%$, $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Note 5)

| Symbol | Characteristic | Min | Typ | Max | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | POWER SUPPLY CURRENT (Inputs and Outputs open) | 75 | 125 | mA | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ICC | Power Supply Current for VCC | (Inputs and Outputs Open) | | 95 | 105 |

CML OUTPUTS (Note 6)

V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{VCCOx}=1.8 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CCOx}}-40$	$\mathrm{~V}_{\mathrm{CCOx}}-20$	$\mathrm{~V}_{\mathrm{CCOx}}$	mV
		$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{VCCOx}=1.2 \mathrm{~V}$	1160	1780	1800	
			1180	1200		
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Voltage		$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{VCCOx}=1.8 \mathrm{~V}$	1300	$\mathrm{~V}_{\mathrm{CCOx}}-400$	1400
		$\mathrm{~V}_{\mathrm{CCOx}}-275$	mV			
		1525				
		$\mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{VCCOx}=1.2 \mathrm{~V}$	700	800	925	

DIFFERENTIAL INPUTS DRIVEN SINGLE-ENDED (Note 7) (Figure 6)

V_{th}	Input Threshold Reference Voltage Range (Note 8)	1050		$\mathrm{~V}_{\mathrm{CC}}-100$	mV
V_{IH}	Single-Ended Input HIGH Voltage	$\mathrm{V}_{\mathrm{th}}+100$		$\mathrm{~V}_{\mathrm{CC}}$	mV
V_{IL}	Single-Ended Input LOW Voltage	GND		$\mathrm{V}_{\mathrm{th}}-100$	mV
$\mathrm{V}_{\text {ISE }}$	Single-Ended Input Voltage $\left(\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\mathrm{IL}}\right)$	200		1200	mV

$V_{\text {Refac }}$

$V_{\text {REFAC }}$	Output Reference Voltage $@ 100 \mu \mathrm{~A}$ for Capacitor - Coupled Inputs, Only	$\mathrm{V}_{\mathrm{CC}}-550$	$\mathrm{~V}_{\mathrm{CC}}-450$	$\mathrm{~V}_{\mathrm{CC}}-300$	mV

DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Note 9) (Figures 4 and 7)

$\mathrm{V}_{\text {IHD }}$	Differential Input HIGH Voltage (IN, IN)	1100		$\mathrm{~V}_{\mathrm{CC}}$	mV
$\mathrm{V}_{\text {ILD }}$	Differential Input LOW Voltage (IN, IN)	GND		$\mathrm{V}_{\mathrm{CC}}-100$	mV
$\mathrm{V}_{\text {ID }}$	Differential Input Voltage (IN, IN) (V/IHD $\left.-\mathrm{V}_{\text {ILD }}\right)$	100		1200	mV
$\mathrm{V}_{\text {CMR }}$	Input Common Mode Range (Differential Configuration, Note 10) (Figure 9)	1050		$\mathrm{~V}_{\mathrm{CC}}-50$	mV
I_{IH}	Input HIGH Current IN/IN (VTO / VT1 Open)	-150		150	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current IN/IN (VTO /VT1 Open)	-150		150	$\mu \mathrm{~A}$

CONTROL INPUT (SEL Pin)

V_{IH}	Input HIGH Voltage for Control Pin	$\mathrm{V}_{\mathrm{CC}} \times 0.65$		$\mathrm{~V}_{\mathrm{CC}}$	mV
V_{IL}	Input LOW Voltage for Control Pin	GND		$\mathrm{V}_{\mathrm{CC}} \times 0.35$	mV
I_{IH}	Input HIGH Current	-150	20	+150	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current	-150	5	+150	$\mu \mathrm{~A}$

TERMINATION RESISTORS

$\mathrm{R}_{\text {TIN }}$	Internal Input Termination Resistor (Measured from INx to VTX)	45	50	55	Ω
$\mathrm{R}_{\text {TOUT }}$	Internal Output Termination Resistor	45	50	55	Ω

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
5. Input parameters vary $1: 1$ with $V_{C C}$. and output parameters vary $1: 1$ with $V_{C C O x}$.
6. CML outputs (Qn/Qn) have internal 50Ω source termination resistors and must be externally terminated with 50Ω to $\mathrm{V}_{\mathrm{CCOx}}$ for proper operation.
7. $\mathrm{V}_{\mathrm{th}}, \mathrm{V}_{\text {IH }}, \mathrm{V}_{\text {IL }}$ and $\mathrm{V}_{\text {ISE }}$ parameters must be complied with simultaneously.
8. $V_{\text {th }}$ is applied to the complementary input when operating in single-ended mode.
9. $\mathrm{V}_{I H D}, \mathrm{~V}_{I L D}, \mathrm{~V}_{I D}$ and $\mathrm{V}_{\mathrm{CMR}}$ parameters must be complied with simultaneously.
10. $\mathrm{V}_{\mathrm{CMR}}$ min varies $1: 1$ with $G N D, \mathrm{~V}_{\mathrm{CMR}}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\mathrm{CMR}}$ range is referenced to the most positive side of the differential input signal.

Table 6. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CCO} 1}=1.2 \mathrm{~V} \pm 5 \%$ or $1.8 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CCO} 2}=1.2 \mathrm{~V} \pm 5 \%$ or $1.8 \mathrm{~V} \pm 5 \%$, $\mathrm{V}_{\mathrm{CCO}}=1.2 \mathrm{~V} \pm 5 \%$ or $1.8 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Note 11)

Symbol	Characteristic	Min	Typ	Max	Unit
$\mathrm{f}_{\text {MAX }}$	Maximum Input Clock Frequency, $\mathrm{V}_{\text {OUTPP }} \geq 200 \mathrm{mV}$	4.0	6.0		GHz
$f_{\text {datamax }}$	Maximum Operating Input Data Rate (PRBS23)	10			Gbps
$V_{\text {OUTPP }}$	Output Voltage Amplitude (See Figures 4, Note 15) $\quad \mathrm{f}_{\text {in }} \leq 4.0 \mathrm{GHz}$	200	330		mV
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	$\begin{array}{lr}\begin{array}{l}\text { Propagation Delay to Output Differential @ } 1 \mathrm{GHz}, \\ \text { Measured at Differential Crosspoint }\end{array} & \mathrm{IN}_{\mathrm{x}} / / \mathrm{N}_{\times} \text {to } Q_{n} / Q_{n} \\ \text { SEL to } Q_{n}\end{array}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	175	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	ps
$\mathrm{t}_{\text {PLH }}$ TC	Propagation Delay Temperature Coefficient		100		fs $/{ }^{\circ} \mathrm{C}$
tskew	Output - Output Skew (Within Device) (Note 12) Device - Device Skew ($\mathrm{t}_{\text {pd }}$ Max - $\mathrm{t}_{\text {pdmin }}$)			$\begin{aligned} & 30 \\ & 50 \end{aligned}$	ps
t_{DC}	Output Clock Duty Cycle (Reference Duty Cycle = 50\%) fin $\leq 4.0 \mathrm{GHz}$	45	50	55	\%
$\mathrm{t}_{\text {IITTER }}$	Output Random Jitter (RJ) (Note 13) $\mathrm{f}_{\mathrm{in}} \leq 4.0 \mathrm{GHz}$ Deterministic Jitter (DJ) (Note 14) 10 Gbps		0.2	$\begin{aligned} & 0.8 \\ & 10 \end{aligned}$	ps rms ps pk-pk
$\mathrm{V}_{\text {INPP }}$	Input Voltage Swing (Differential Configuration) (Note 15)	100		1200	mV
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall Times @ $1 \mathrm{GHz}(20 \%-80 \%)$		50	65	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
11. Measured using a 400 mV source, 50% duty cycle clock source. All outputs must be loaded with external 50Ω to $\mathrm{V}_{\mathrm{CCOx}}$. Input edge rates $40 \mathrm{ps}(20 \%-80 \%)$.
12. Skew is measured between outputs under identical transitions and conditions. Duty cycle skew is defined only for differential operation when the delays are measured from cross-point of the inputs to the crosspoint of the outputs.
13. Additive RMS jitter with 50% duty cycle clock signal.
14. Additive Peak-to-Peak data dependent jitter with input NRZ data at PRBS23.
15. Input and output voltage swing is a single-ended measurement operating in differential mode.

Figure 2. Output Voltage Amplitude ($\mathrm{V}_{\text {OUTPP }}$) vs. Input Frequency (f_{in}) at Ambient Temperature (Typical)

Figure 3. Input Structure

Figure 4. Differential Inputs Driven Differentially

Figure 6. Differential Input Driven Single-Ended

Figure 5. AC Reference Measurement

Figure 7. Differential Inputs Driven Differentially

Figure 8. $\mathbf{V}_{\text {th }}$ Diagram
Figure 9. $\mathbf{V}_{\mathbf{C M R}}$ Diagram

Figure 10. Typical CML Output Structure and Termination

Figure 11. LVPECL Interface

Figure 13. Standard 50Ω Load CML Interface

Figure 12. LVDS Interface

Figure 14. Capacitor-Coupled Differential Interface (V_{T} Connected to $\mathrm{V}_{\text {REFAC }}$)
${ }^{*} \mathrm{~V}_{\text {REFAC }}$ bypassed to ground with a $0.01 \mu \mathrm{~F}$ capacitor

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NB7V586MMNG	QFN32 (Pb-Free)	74 Units / Rail
NB7V586MMNR4G	QFN32 (Pb-Free)	$1000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

QFN32 5x5, 0.5P
CASE 488AM ISSUE A

SCALE 2:1

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-F r e e$ strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON20032D	Electronic versions are uncontrolled except when accessed directly from the Document Repo Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	QFN32 5x5 0.5P	PAG

[^0]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C EC4P-221-MRXD1 6EP1332-1SH71 6ES7223-1PH32-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B HMC6832ALP5LE CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805EQGI 49FCT805CTQG 74FCT3807ASOG 74FCT3807EQGI 74FCT388915TEPYG 853S012AKILF 853S013AMILF 853S058AGILF 8V79S680NLGI ISPPAC-CLK5312S-01TN48I ISPPAC-CLK5520V-01TN100I

[^0]: ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

