## 1.8 V / 2.5 V / 3.3 V Differential 2:1 Clock / Data Multiplexer / Translator with CML Outputs

# Multi–Level Inputs w/ Internal Termination

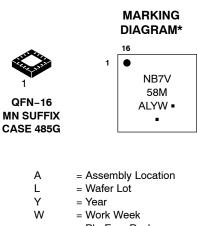
#### Description

The NB7V58M is a high performance differential 2–to–1 Clock or Data multiplexer. The differential inputs incorporate internal 50  $\Omega$  termination resistors that are accessed through the VT pin. This feature allows the NB7V58M to accept various logic level standards, such as LVPECL, CML or LVDS.

The NB7V58M produces minimal Clock or Data jitter operating up to 7 GHz or 10.7 Gb/s, respectively. As such, the NB7V58M is ideal for SONET, GigE, Fiber Channel, Backplane and other Clock/Data distribution applications.

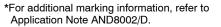
The 16 mA differential CML outputs provide matching internal 50  $\Omega$  terminations and 400 mV output swings when externally terminated with a 50  $\Omega$  resistor to V<sub>CC</sub>.

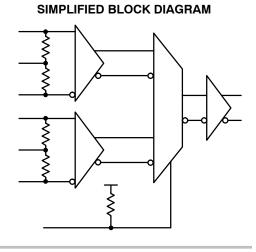
The NB7V58M is offered in a low profile 3 mm x 3 mm 16-pin QFN package and is a member of the GigaComm<sup>M</sup> family of high performance Clock / Data products. For applications that require equalization, the pin-compatible NB7VQ58M is also available. Application notes, models, and support documentation are available at www.onsemi.com.


#### Features

- Maximum Input Data Rate > 10.7 Gb/s
- Data Dependent Jitter < 10 ps
- Maximum Input Clock Frequency > 7 GHz
- Random Clock Jitter < 0.8 ps RMS
- 180 ps Typical Propagation Delay
- 35 ps Typical Rise and Fall Times
- Differential CML Outputs, 400 mV Peak-to-Peak, Typical
- Operating Range:  $V_{CC} = 1.71$  V to 3.6 V with GND = 0 V
- Internal 50  $\Omega$  Input Termination Resistors
- QFN-16 Package, 3 mm x 3 mm
- -40°C to +85°C Ambient Operating Temperature
- This is a Pb–Free Device




### **ON Semiconductor®**


http://onsemi.com



= Pb-Free Package

(Note: Microdot may be in either location)





#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

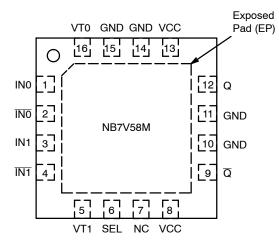



Figure 1. Pin Configuration (Top View)

#### Table 1. SELect FUNCTION TRUTH TABLE

| SEL | Q   | Q   |
|-----|-----|-----|
| L   | INO | ĪNO |
| н   | IN1 | ĪN1 |

#### Table 2. PIN DESCRIPTION

Multi-Level Inputs LVPECL, LVDS, CML

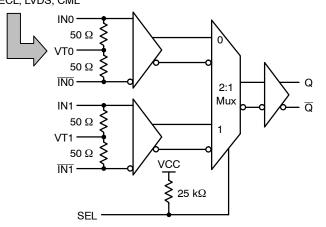



Figure 2. Detailed Block Diagram

| Pin | Name | I/O                     | Description                                                                                                                                                                                                                                                                                                       |
|-----|------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | IN0  | LVPECL, CML, LVDS Input | Noninverted Differential Input (Note 1)                                                                                                                                                                                                                                                                           |
| 2   | ĪNŌ  | LVPECL, CML, LVDS Input | Inverted Differential Input (Note 1)                                                                                                                                                                                                                                                                              |
| 3   | IN1  | LVPECL, CML, LVDS Input | Noninverted Differential Input (Note 1)                                                                                                                                                                                                                                                                           |
| 4   | ĪN1  | LVPECL, CML, LVDS Input | Inverted Differential Input (Note 1)                                                                                                                                                                                                                                                                              |
| 5   | VT1  | -                       | Internal 50 $\Omega$ Termination Pin for IN1/IN1                                                                                                                                                                                                                                                                  |
| 6   | SEL  | LVTTL/LVCMOS Input      | SEL Input. Low for IN0 inputs, high for IN1 inputs. (Note 1) Pin will default HIGH when left open (has internal pull-up resistor)                                                                                                                                                                                 |
| 7   | NC   |                         | No Connect                                                                                                                                                                                                                                                                                                        |
| 8   | VCC  | -                       | Positive Supply Voltage (Note 2)                                                                                                                                                                                                                                                                                  |
| 9   | Q    | CML Output              | Inverted Differential Output                                                                                                                                                                                                                                                                                      |
| 10  | GND  | -                       | Negative Supply Voltage                                                                                                                                                                                                                                                                                           |
| 11  | GND  | -                       | Negative Supply Voltage                                                                                                                                                                                                                                                                                           |
| 12  | Q    | CML Output              | Noninverted Differential Output                                                                                                                                                                                                                                                                                   |
| 13  | VCC  | -                       | Positive Supply Voltage (Note 2)                                                                                                                                                                                                                                                                                  |
| 14  | GND  | -                       | Negative Supply Voltage                                                                                                                                                                                                                                                                                           |
| 15  | GND  | -                       | Negative Supply Voltage                                                                                                                                                                                                                                                                                           |
| 16  | VT0  | -                       | Internal 50 $\Omega$ Termination Pin for IN0/IN0                                                                                                                                                                                                                                                                  |
| -   | EP   | -                       | The Exposed Pad (EP) on the QFN-16 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is electrically connected to the die, and must be electrically and thermally connected to GND on the PC board. |

1. In the differential configuration when the input termination pins (VT0, VT1) are connected to a common termination voltage or left open, and if no signal is applied on IN0/IN0, IN1/IN1 inputs, then the device will be susceptible to self–oscillation. Q/Q outputs have internal 50 Ω source termination resistors.

2. All VCC and GND pins must be externally connected to a power supply for proper operation.

#### **Table 3. ATTRIBUTES**

| Characteristic                                         | Value                             |                      |  |  |
|--------------------------------------------------------|-----------------------------------|----------------------|--|--|
| ESD Protection                                         | Human Body Model<br>Machine Model | > 2 kV<br>> 200 V    |  |  |
| R <sub>PU</sub> – SEL Input Pull–up Resistor           |                                   | 25 kΩ                |  |  |
| Moisture Sensitivity (Note 3)                          | QFN-16                            | Level 1              |  |  |
| Flammability Rating                                    | Oxygen Index: 28 to 34            | UL 94 V-0 @ 0.125 in |  |  |
| Transistor Count                                       | 312                               |                      |  |  |
| Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test |                                   |                      |  |  |

3. For additional information, see Application Note AND8003/D.

#### **Table 4. MAXIMUM RATINGS**

| Symbol               | Parameter                                          | Condition 1         | Condition 2      | Rating                       | Unit |
|----------------------|----------------------------------------------------|---------------------|------------------|------------------------------|------|
| V <sub>CC</sub>      | Positive Power Supply                              | GND = 0 V           |                  | 4.0                          | V    |
| V <sub>IN</sub>      | Positive Input Voltage                             | GND = 0 V           |                  | –0.5 to V <sub>CC</sub> +0.5 | V    |
| V <sub>INPP</sub>    | Differential Input Voltage  INn - INn              |                     |                  | 1.89                         | V    |
| I <sub>OUT</sub>     | Output Current                                     | Continuous<br>Surge |                  | 34<br>40                     | mA   |
| I <sub>IN</sub>      | Input Current Through $R_T$ (50 $\Omega$ Resistor) |                     |                  | ±40                          | mA   |
| T <sub>A</sub>       | Operating Temperature Range                        |                     |                  | -40 to +85                   | °C   |
| T <sub>stg</sub>     | Storage Temperature Range                          |                     |                  | -65 to +150                  | °C   |
| $\theta_{JA}$        | Thermal Resistance (Junction-to-Ambient) (Note 4)  | 0 LFPM<br>500 LFPM  | QFN-16<br>QFN-16 | 42<br>35                     | °C/W |
| $\theta_{\text{JC}}$ | Thermal Resistance (Junction-to-Case) (Note 4)     |                     | QFN-16           | 4                            | °C/W |
| T <sub>sol</sub>     | Wave Solder Pb-Free                                |                     |                  | 265                          | °C   |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
JEDEC standard multilayer board – 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

| Symbol            | Characteristic                                                                      |                                     | Min                                           | Тур                                           | Max                                           | Unit |
|-------------------|-------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|------|
| POWER             | SUPPLY CURRENT                                                                      |                                     |                                               |                                               |                                               |      |
| I <sub>CC</sub>   | Power Supply Current (Inputs and Outputs Open)                                      |                                     |                                               | 100                                           | 150                                           | mA   |
| CML OU            | TPUTS (Note 6)                                                                      |                                     |                                               |                                               |                                               |      |
| V <sub>OH</sub>   | Vc                                                                                  | C = 3.3 V<br>C = 2.5 V<br>C = 1.8 V | V <sub>CC</sub> - 30<br>3270<br>2470<br>1770  | V <sub>CC</sub> – 5<br>3295<br>2495<br>1795   | V <sub>CC</sub><br>3300<br>2500<br>1800       | mV   |
| V <sub>OL</sub>   | Vc                                                                                  | C = 3.3 V<br>C = 2.5 V<br>C = 1.8 V | V <sub>CC</sub> - 500<br>2800<br>2000<br>1300 | V <sub>CC</sub> - 400<br>2900<br>2100<br>1400 | V <sub>CC</sub> - 300<br>3000<br>2200<br>1500 | mV   |
| DIFFERE           | INTIAL INPUTS DRIVEN SINGLE-ENDED (Note 7) (Figures 6                               | & 8)                                |                                               |                                               |                                               |      |
| V <sub>th</sub>   | Input Threshold Reference Voltage Range (Note 8)                                    |                                     | 1050                                          |                                               | V <sub>CC</sub> – 100                         | mV   |
| V <sub>IH</sub>   | Single-ended Input HIGH Voltage                                                     |                                     | V <sub>th</sub> + 100                         |                                               | V <sub>CC</sub>                               | mV   |
| V <sub>IL</sub>   | Single-ended Input LOW Voltage                                                      |                                     | GND                                           |                                               | V <sub>th</sub> – 100                         | mV   |
| V <sub>ISE</sub>  | Single-ended Input Voltage (V <sub>IH</sub> - V <sub>IL</sub> )                     |                                     | 200                                           |                                               | 1200                                          | mV   |
| DIFFERE           | ENTIAL INO/ $\overline{INO}$ , IN1/ $\overline{IN1}$ , INPUTS DRIVEN DIFFERENTIALLY | (Figures 6 & 9                      | ) (Note 9)                                    |                                               |                                               |      |
| V <sub>IHD</sub>  | Differential Input HIGH Voltage                                                     |                                     | 1100                                          |                                               | V <sub>CC</sub>                               | mV   |
| V <sub>ILD</sub>  | Differential Input LOW Voltage                                                      |                                     | GND                                           |                                               | V <sub>CC</sub> - 100                         | mV   |
| V <sub>ID</sub>   | Differential Input Voltage (V <sub>IHD</sub> – V <sub>ILD</sub> )                   |                                     | 100                                           |                                               | 1200                                          | mV   |
| V <sub>CMR</sub>  | Input Common Mode Range (Differential Configuration, Note ure 10)                   | 10) (Fig-                           | 1050                                          |                                               | V <sub>CC</sub> – 50                          | mV   |
| I <sub>IH</sub>   | Input HIGH Current (VTn Open)                                                       |                                     | -150                                          |                                               | 150                                           | μA   |
| IIL               | Input LOW Current (VTn Open)                                                        |                                     | -150                                          |                                               | 150                                           | μA   |
| CONTRO            | DL INPUT (SEL)                                                                      |                                     |                                               |                                               |                                               |      |
| V <sub>IH</sub>   | Input HIGH Voltage                                                                  |                                     | V <sub>CC</sub> x 0.65                        |                                               | V <sub>CC</sub>                               | mV   |
| V <sub>IL</sub>   | Input LOW Voltage                                                                   |                                     | GND                                           |                                               | V <sub>CC</sub> x 0.35                        | mV   |
| I <sub>IH</sub>   | Input HIGH Current                                                                  |                                     | -150                                          |                                               | +150                                          | μA   |
| IIL               | Input LOW Current                                                                   |                                     | -200                                          |                                               | +200                                          | μA   |
| TERMINA           | ATION RESISTORS                                                                     |                                     |                                               |                                               |                                               |      |
| R <sub>TIN</sub>  | Internal Input Termination Resistor                                                 |                                     | 45                                            | 50                                            | 55                                            | Ω    |
| R <sub>TOUT</sub> | Internal Output Termination Resistor                                                |                                     | 45                                            | 50                                            | 55                                            | Ω    |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

5. Input and output parameters vary 1:1 with  $V_{CC}$ .

6. CML outputs loaded with 50  $\Omega$  to V<sub>CC</sub> for proper operation. 7. Vth, V<sub>IH</sub>, V<sub>IL</sub> and V<sub>ISE</sub> parameters must be complied with simultaneously.

8. Vth is applied to the complementary input when operating in single-ended mode.

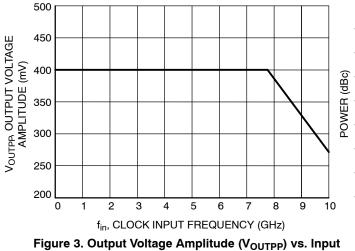
9.  $V_{IHD}$ ,  $V_{ILD}$ ,  $V_{ID}$  and  $V_{CMR}$  parameters must be complied with simultaneously. 10.  $V_{CMR}$  min varies 1:1 with GND,  $V_{CMR}$  max varies 1:1 with  $V_{CC}$ . The  $V_{CMR}$  range is referenced to the most positive side of the differential input signal.

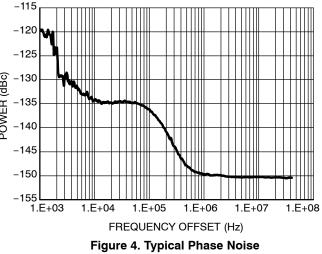
| Symbol                                 | Characteristic                                                                              |                                                                                                 |          | Тур                                          | Max       | Unit               |
|----------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------|----------------------------------------------|-----------|--------------------|
| f <sub>MAX</sub>                       | Maximum Input Clock Frequency                                                               | Voutpp ≥ 200 mV                                                                                 | 7        | 8                                            |           | GHz                |
| f <sub>DATAMAX</sub>                   | Maximum Operating Data Rate (PRBS23)                                                        |                                                                                                 | 10.7     | 12                                           |           | Gbps               |
| fSEL                                   | Maximum Toggle Frequency, SEL                                                               |                                                                                                 | 25       | 50                                           |           | MHz                |
| V <sub>OUTPP</sub>                     | Output Voltage Amplitude (@ V <sub>INPPmin</sub> )<br>(Note 12) (Figures 8 & 10)            | $f_{in} \le 7 \text{ GHz}$                                                                      | 200      | 400                                          |           | mV                 |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Propagation Delay to Differential Outputs,<br>@ 1 GHz, measured at differential cross-point | INn/ <del>INn</del> to Q, <u>Q</u><br>SEL to Q, <u>Q</u>                                        | 120<br>5 | 180<br>13                                    | 240<br>22 | ps<br>ns           |
| t <sub>PLH</sub> TC                    | Propagation Delay Temperature Coefficient                                                   |                                                                                                 |          | 50                                           |           | ∆fs/°C             |
| t <sub>skew</sub>                      | Device – Device skew (tpdmax – tpdmin)                                                      | e – Device skew (tpdmax – tpdmin)                                                               |          |                                              | 50        | ps                 |
| t <sub>DC</sub>                        | Output Clock Duty Cycle<br>(Reference Duty Cycle = 50%)                                     | $\begin{array}{l} f_{in} \leq 5.0 \; \text{GHz} \\ f_{in} \leq 7.0 \; \text{GHz} \end{array}$   | 45<br>40 | 50<br>50                                     | 55<br>60  | %                  |
| t <sub>JITTER</sub>                    | RJ – Output Random Jitter (Note 13)<br>DJ – Residual Output Deterministic Jitter (Note 14)  | $\begin{array}{l} f_{in} \leq 7.0 \; \text{GHz} \\ f_{in} \leq 10.7 \; \text{Gbps} \end{array}$ |          | 0.2                                          | 0.8<br>10 | ps RMS<br>ps pk–pk |
| $\Phi_{\sf N}$                         | Phase Noise, f <sub>c</sub> = 1 GHz                                                         | 10 kHz<br>100 kHz<br>1 MHz<br>10 MHz<br>20 MHz<br>40 MHz                                        |          | -135<br>-136<br>-150<br>-151<br>-151<br>-151 |           | dBc                |
| t∫ <sub>ΦN</sub>                       | Integrated Phase Jitter (Figure 4) f <sub>c</sub> = 1 GHz, 12 kHz – 20 MHz Offset (RMS)     |                                                                                                 |          | 35                                           |           | fs                 |
|                                        | Crosstalk Induced Jitter (Adjacent Channel) (Note 15)                                       |                                                                                                 |          |                                              | 0.7       | ps RMS             |
| V <sub>INPP</sub>                      | Input Voltage Swing (Differential Configuration) (Figure 10) (Note 16)                      |                                                                                                 |          |                                              | 1200      | mV                 |
| t <sub>r</sub> , t <sub>f</sub>        | Output Rise/Fall Times @ 1 GHz (20% – 80%)                                                  | Q, <u>Q</u>                                                                                     | 15       | 35                                           | 50        | ps                 |

| Table 6. AC CHARACTERISTICS ( $V_{CC}$ = 1.71 V to 3.6 V; GND = 0 V; $T_A$ = -40°C to 85°C) (Note 11 | Table 6. | AC CHARACTERISTICS | $(V_{CC} = 1.71 \text{ V to } 3.6 \text{ V}; \text{ GND} = 0 \text{ V}; \text{ T}_{A} = -40^{\circ}\text{C to } 85^{\circ}\text{C})$ | (Note 11) |
|------------------------------------------------------------------------------------------------------|----------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------|
|------------------------------------------------------------------------------------------------------|----------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------|

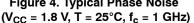
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

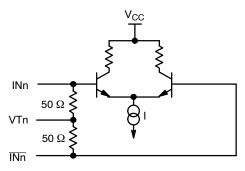
11. Measured using a V<sub>INPP</sub>min source, 50% duty cycle clock source. All output loading with external 50  $\Omega$  to V<sub>CC</sub>. Input edge rates 40 ps (20% – 80%).


12. Output voltage swing is a single-ended measurement operating in differential mode.

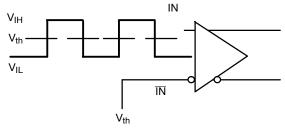

13. Additive RMS jitter with 50% duty cycle clock signal.

14. Additive Peak-to-Peak data dependent jitter with input NRZ data at PRBS23 at 3 Gbps.


15. Crosstalk is measured at the output while applying two similar clock frequencies that are asynchronous with respect to each other at the inputs.


16. Input voltage swing is a single-ended measurement operating in differential mode.






igure 3. Output Voltage Amplitude (V<sub>OUTPP</sub>) vs. Input Frequency (f<sub>in</sub>) at Ambient Temperature (Typical)

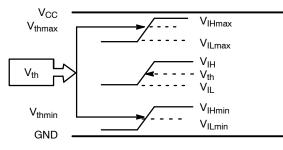
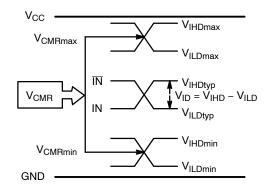


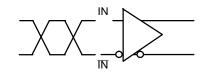
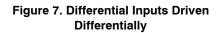


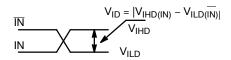


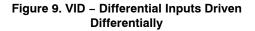


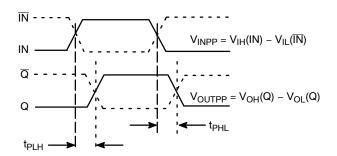




Figure 8. V<sub>th</sub> Diagram















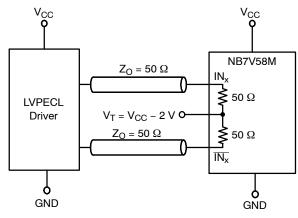




Figure 12. LVPECL Interface

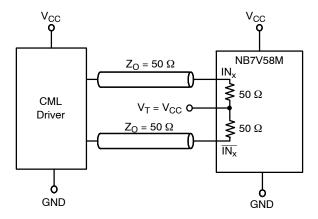



Figure 14. Standard 50  $\Omega$  Load CML Interface

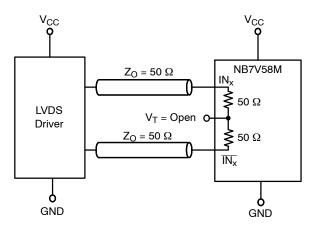



Figure 13. LVDS Interface

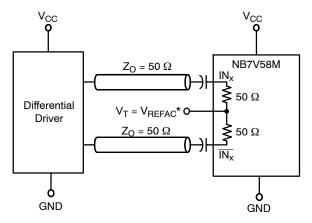



Figure 15. Capacitor-Coupled Differential Interface (V<sub>T</sub> Connected to External V<sub>REFAC</sub>) \*V<sub>REFAC</sub> Bypassed to Ground with 0.01 µF Capacitor

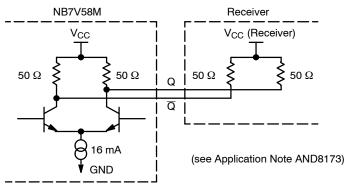
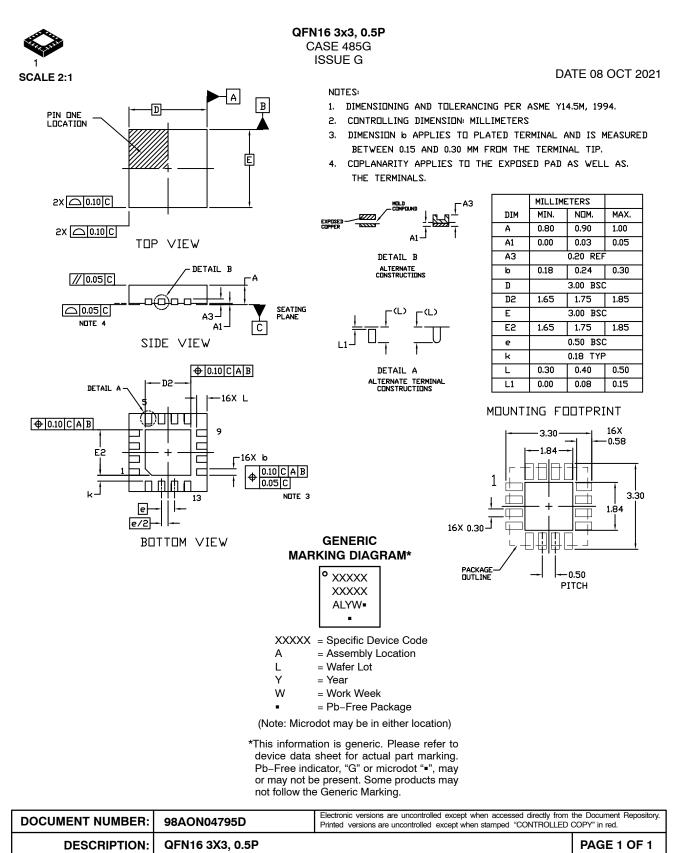



Figure 16. Typical CML Output Structure and Termination


#### **ORDERING INFORMATION**

| Device        | Package             | Shipping $^{\dagger}$ |
|---------------|---------------------|-----------------------|
| NB7V58MMNG    | QFN-16<br>(Pb-Free) | 123 Units / Rail      |
| NB7V58MMNHTBG | QFN-16<br>(Pb-Free) | 100 / Tape & Reel     |
| NB7V58MMNTXG  | QFN-16<br>(Pb-Free) | 3000 / Tape & Reel    |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

GigaComm is a trademark of Semiconductor Component Industries, LLC (SCILLC).

# onsemi



onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

#### TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK854BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7 ADCLK905BCPZ-WP