1.8 V/2.5 V Differential 2×2 Crosspoint Switch with CML Outputs Clock/Data Buffer/Translator

Multi-Level Inputs w/ Internal Termination

NB7V72M

Description

The NB7V72M is a high bandwidth, low voltage, fully differential 2×2 crosspoint switch with CML outputs. The NB7V72M design is optimized for low skew and minimal jitter as it produces two identical copies of Clock or Data operating up to 5 GHz or $6.5 \mathrm{~Gb} / \mathrm{s}$, respectively. As such, the NB7V72M is ideal for SONET, GigE, Fiber Channel, Backplane and other clock/data distribution applications. The differential IN/ $\overline{\mathrm{IN}}$ inputs incorporate internal 50Ω termination resistors and will accept LVPECL, CML, or LVDS logic levels (see Figure 10). The 16 mA differential CML outputs provide matching internal 50Ω terminations and produce 400 mV output swings when externally terminated with a 50Ω resistor to V_{CC} (see Figure 11). The NB7V72M is the $1.8 \mathrm{~V} / 2.5 \mathrm{~V}$ CML version of the NB7L72M and is offered in a low profile $3 \times 3 \mathrm{~mm} 16$-pin QFN package. Application notes, models, and support documentation are available at www.onsemi.com.

The NB7V72M is a member of the GigaComm ${ }^{\text {TM }}$ family of high performance clock products.

Features

- Maximum Input Data Rate $>6.5 \mathrm{~Gb} / \mathrm{s}$
- Data Dependent Jitter < 15 ps pk-pk
- Maximum Input Clock Frequency $>5 \mathrm{GHz}$
- Random Clock Jitter < 0.8 ps RMS, Max
- 150 ps Typical Propagation Delay
- 30ps Typical Rise and Fall Times
- Differential CML Outputs, 400 mV peak-to-peak, typical
- Operating Range: $\mathrm{V}_{\mathrm{CC}}=1.71 \mathrm{~V}$ to 2.625 V with $\mathrm{GND}=0 \mathrm{~V}$
- Internal 50Ω Input Termination Resistors
- QFN-16 Package, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Ambient Operating Temperature
- These are $\mathrm{Pb}-$ Free Devices

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

Figure 1. Logic Diagram
ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

Table 1. INPUT/OUTPUT SELECT TRUTH TABLE

SEL0*	SEL1*	Q0	Q1
L	L	IN0	IN0
L	H	IN0	IN1
H	L	IN1	IN0
H	H	IN1	IN1

*Defaults HIGH when left open

Figure 2. Pin Configuration (Top View)

Table 2. PIN DESCRIPTION

Pin	Name	I/O	Description
1	INO	LVPECL, CML, LVDS Input	Noninverted Differential Input. (Note 1)
2	INO	LVPECL, CML, LVDS Input	Inverted Differential Input. (Note 1)
3	IN1	LVPECL, CML, LVDS Input	Inverted Differential Input. (Note 1)
4	IN1	LVPECL, CML, LVDS Input	Noninverted Differential Input. (Note 1)
5	VT1	-	Internal 50Ω Termination Pin for IN1 and IN1
6	SEL1	LVCMOS Input	Input Select logic pin for INO or IN1 Inputs to Q1 output. See Table 1, Input/Output Select Truth Table; pin defaults HIGH when left open.
7	GND		Negative Supply Voltage
8	VCC	-	Positive Supply Voltage
9	Q1	CML Output	Noninverted Differential Output. (Note 1)
10	Q1	CML Output	Inverted Differential Output. (Note 1)
11	Q0	CML Output	Inverted Differential Output. (Note 1)
12	Q0	CML Output	Noninverted Differential Output. (Note 1)
13	VCC	-	Positive Supply Voltage
14	GND	-	Negative Supply Voltage
15	SELO	LVCMOS Input	Input Select logic pin for INO or IN1 Inputs to Q0 output. See Table 1, Input/Output Select Truth Table; pin defaults HIGH when left open.
16	VT0	-	Internal 50Ω Termination Pin for INO and INO
-	EP	-	The Exposed Pad (EP) on the QFN-16 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is electrically connected to the die, and is recommended to be electrically and thermally connected to GND on the PC board.

1. In the differential configuration when the input termination pins (VTO, VT1) are connected to a common termination voltage or left open, and if no signal is applied on $\mathrm{INx} / / \mathrm{INx}$ input, then the device will be susceptible to self-oscillation.
2. All VCC and GND pins must be externally connected to a power supply for proper operation.

Table 3. ATTRIBUTES

Characteristics	Value
ESD Protection Human Body Model Machine Model	$>4 \mathrm{kV}$ $>200 \mathrm{~V}$
RPu - Input Pullup Resistor	$75 \mathrm{k} \Omega$
Moisture Sensitivity $16-$ QFN	Level 1
Flammability Rating Oxygen Index: 28 to 34	UL $94 \mathrm{~V}-0$ @ 0.125 in
Transistor Count	210
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit	
V_{CC}	Positive Power Supply	GND $=0 \mathrm{~V}$		3.0	V	
$\mathrm{V}_{\text {IN }}$	Positive Input Voltage	GND $=0 \mathrm{~V}$		-0.5 to $\mathrm{V}_{\text {CC }}+0.5$	V	
VINPP	Differential Input Voltage \|IN - IN				1.89	V
1 N	Input Current Through $\mathrm{R}_{\mathrm{T}}(50 \Omega$ Resistor)			± 40	mA	
T_{A}	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$	
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient) (Note 3)	$\begin{aligned} & 0 \text { lfpm } \\ & 500 \text { lfpm } \end{aligned}$	$\begin{aligned} & \hline \text { QFN-16 } \\ & \text { QFN-16 } \end{aligned}$	$\begin{aligned} & 42 \\ & 35 \end{aligned}$	$\begin{aligned} & \hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case) (Note 3)		QFN-16	4	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
$\mathrm{T}_{\text {sol }}$	Wave Solder Pb-Free			265	${ }^{\circ} \mathrm{C}$	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
3. JEDEC standard multilayer board - 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 5. DC CHARACTERISTICS, Multi-Level Inputs $\mathrm{V}_{\mathrm{CC}}=1.71 \mathrm{~V}$ to 2.625 V , $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 4)

| Symbol | Characteristic | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

POWER SUPPLY CURRENT						
ICC	Power Supply Current (Inputs and Outputs Open)	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	120	145	170	mA
		$\mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	80	110	140	

CML OUTPUTS

V_{OH}	Output HIGH Voltage (Note 5)	$\begin{aligned} & V_{C C}=2.5 \mathrm{~V} \\ & V_{C C}=1.8 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-40 \\ 2460 \\ 1760 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-20 \\ 2480 \\ 1780 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & 2500 \\ & 1800 \end{aligned}$	mV
V_{OL}	Output LOW Voltage (Note 5)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-650 \\ 1850 \\ 1150 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-400 \\ 2100 \\ 1400 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-300 \\ 2200 \\ 1500 \end{gathered}$	mV

DIFFERENTIAL CLOCK INPUTS DRIVEN SINGLE-ENDED (Note 6) (Figures 5 and 7)

V_{th}	Input Threshold Reference Voltage Range (Note 7)	1050		$\mathrm{~V}_{\mathrm{CC}}-100$	mV
V_{IH}	Single-Ended Input HIGH Voltage	$\mathrm{V}_{\mathrm{th}}+100$		$\mathrm{~V}_{\mathrm{CC}}$	mV
V_{IL}	Single-Ended Input LOW Voltage	GND		$\mathrm{V}_{\mathrm{th}}-100$	mV
$\mathrm{V}_{\mathrm{ISE}}$	Single-Ended Input Voltage $\left(\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\mathrm{IL}}\right)$	200		$\mathrm{~V}_{\mathrm{CC}}-\mathrm{GND}$	mV

DIFFERENTIAL DATA/CLOCK INPUTS DRIVEN DIFFERENTIALLY (Figures 6 and 8) (Note 8)

$\mathrm{V}_{\text {IHD }}$	Differential Input HIGH Voltage (INn, INn)	1100		$\mathrm{~V}_{\mathrm{CC}}$	mV
$\mathrm{V}_{\text {ILD }}$	Differential Input LOW Voltage (INn, INn)	GND		$\mathrm{V}_{\mathrm{CC}}-100$	mV
$\mathrm{V}_{\text {ID }}$	Differential Input Voltage (INn, INn) (VIHD $-\mathrm{V}_{\text {ILD }}$	1200	mV		
$\mathrm{V}_{\text {CMR }}$	Input Common Mode Range (Differential Configuration, Note 9) (Figure 9)	1050		$\mathrm{~V}_{\mathrm{CC}}-50$	mV
I_{IH}	Input HIGH Current INn, INn (VTIN/VTIN Open)	-150		150	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current INn, INn (VTIN/VTIN Open)	-150		150	$\mu \mathrm{~A}$

CONTROL INPUTS (SELO, SEL1)

$V_{I H}$	Input HIGH Voltage for Control Pins	$V_{C C} \times 0.65$		$V_{C C}$	$m V$
$V_{I L}$	Input LOW Voltage for Control Pins	$G N D$		$V_{C C} \times 0.35$	$m V$
$I_{I H}$	Input HIGH Current	-150	20	150	$\mu \mathrm{~A}$
$I_{I L}$	Input LOW Current	-150	5	$\mu \mathrm{~A}$	

TERMINATION RESISTORS

$\mathrm{R}_{\text {TIN }}$	Internal Input Termination Resistor	40	50	60	Ω
$\mathrm{R}_{\text {TOUT }}$	Internal Output Termination Resistor	40	50	60	

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
4. Input and output parameters vary $1: 1$ with V_{Cc}.
5. CML outputs loaded with 50Ω to $V_{C C}$ for proper operation.
6. $\mathrm{V}_{\mathrm{th}}, \mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$, and $\mathrm{V}_{\text {ISE }}$ parameters must be complied with simultaneously.
7. $\mathrm{V}_{\text {th }}$ is applied to the complementary input when operating in single-ended mode.
8. $\mathrm{V}_{I H D}, \mathrm{~V}_{I L D}, \mathrm{~V}_{I D}$, and $\mathrm{V}_{\mathrm{CMR}}$ parameters must be complied with simultaneously.
9. $\mathrm{V}_{\mathrm{CMR}}$ min varies $1: 1$ with $G N D, \mathrm{~V}_{\mathrm{CMR}}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\mathrm{CMR}}$ range is referenced to the most positive side of the differential input signal.

Table 6. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=1.71 \mathrm{~V}$ to $2.625 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Note 10)

Symbol	Characteristic	Min	Typ	Max	Unit
$\mathrm{f}_{\text {MAX }}$	$\begin{array}{ll}\text { Maximum Input Clock Frequency } & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}\end{array}$	$\begin{gathered} 5 \\ 4.5 \end{gathered}$			GHz
$f_{\text {datamax }}$	Maximum Operating Data Rate (PRBS23)	6.5			Gbps
V OUTPP	Output Voltage Amplitude (@ $\mathrm{V}_{\text {INPPmin }}$) fin $\leq 5 \mathrm{GHz}$ (See Figures 3 and 10, Note 11)	200	400		mV
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay to Differential Outputs, @ 1GHz, Measured at Differential Cross-point INn/INn to Qn/Qn	110	150	200	ps
$\mathrm{t}_{\text {PLH }}$ TC	Propagation Delay Temperature Coefficient		50		$\Delta \mathrm{fs} /{ }^{\circ} \mathrm{C}$
${ }^{\text {tSKEW }}$	Output-to-Output Skew (within device) (Note 12) Device-to-Device Skew ($\mathrm{t}_{\text {pdmax }}$ - $\mathrm{t}_{\text {pdmin }}$)			$\begin{aligned} & \hline 30 \\ & 50 \end{aligned}$	ps
t_{DC}	Output Clock Duty Cycle (Reference Duty Cycle $=50 \%$) $\mathrm{fin} \leq 5 \mathrm{GHz}$	45	50	55	\%
$\mathrm{t}_{\mathrm{j} \text { itter }}$	RJ - Output Random Jitter (Note 13) fin $\leq 5 \mathrm{GHz}$ DJ - Deterministic Jitter (Note 14) ≤ 9 Gbps		0.5	$\begin{gathered} \hline 0.8 \\ 10 \end{gathered}$	ps RMS ps pk-pk
VINPP	Input Voltage Swing (Differential Configuration) (Note 15)	100		1200	mV
$\mathrm{tr}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall Times @ 1 GHz (20\% - 80\%), Qn, Qn	20	30	50	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.
10. Measured using a 400 mV source, 50% duty cycle clock source. All output loading with external 50Ω to V_{Cc}. Input edge rates $\geq 40 \mathrm{ps}$ ($20 \%-80 \%$).
11. Output voltage swing is a single-ended measurement operating in differential mode.
12. Skew is measured between outputs under identical transitions and conditions. Duty cycle skew is defined only for differential operation when the delays are measured from cross-point of the inputs to the cross-point of the outputs.
13. Additive RMS jitter with 50% duty cycle clock signal.
14. Additive Peak-to-Peak data dependent jitter with input NRZ data at PRBS23.
15. Input voltage swing is a single-ended measurement operating in differential mode.

Figure 3. CLOCK Output Voltage Amplitude ($\mathrm{V}_{\text {OUTPP }}$) vs. Input Frequency ($\mathrm{f}_{\text {in }}$) at Ambient Temperature (Typ)

Figure 4. Input Structure

Figure 5. Differential Input Driven
Single-Ended

Figure 7. $V_{\text {th }}$ Diagram

Figure 9. $\mathrm{V}_{\mathrm{CMR}}$ Diagram

Figure 6. Differential Inputs Driven Differentially

Figure 8. Differential Inputs Driven Differentially

Figure 10. AC Reference Measurement

Figure 11. Typical CML Output Structure and Termination

Figure 12. Typical Termination for CML Output Driver and Device Evaluation

Figure 13. LVPECL Interface

Figure 15. Standard 50Ω Load CML Interface

Figure 14. LVDS Interface

Figure 16. Capacitor-Coupled Differential Interface (VT Connected to External V Refac)
${ }^{*} \mathrm{~V}_{\text {REFAC }}$ bypassed to ground with a $0.01 \mu \mathrm{~F}$ capacitor

NB7V72M

ORDERING INFORMATION

Device	Package	Shipping †
NB7V72MMNHTBG	QFN-16 (Pb-free)	$100 /$ Tape \& Reel
NB7V72MMNTXG	QFN-16 (Pb-free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

QFN16 3x3, 0.5P
CASE 485G
ISSUE G
DATE 08 OCT 2021

side view

battam View

Nates:

1. DIMENSIDNING AND TDLERANCING PER ASME Y14.5M, 1994.
2. CDNTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIDN b APPLIES TD PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FREM THE TERMINAL TIP.
4. CDPLANARITY APPLIES TD THE EXPOSED PAD AS WELL AS. THE TERMINALS.

DETAIL B
${ }^{\text {ALTERNATE }}$

DETAIL A
ALTERNATE TERMINAL
constructions

DIM	MILLIMETERS				
	MIN.	NDM.	MAX.		
A	0.80	0.90	1.00		
A1	0.00	0.03	0.05		
A3	0.20 REF				
b	0.18	0.24			
D	3.00 BSC				
D2	1.65	1.75			1.85
E	3.00 BSC				
E2	1.65	1.75	1.85		
e	0.50 BSC				
k	0.18 TYP				
L	0.30	0.40	0.50		
L1	0.00	0.08	0.15		

GENERIC MARKING DIAGRAM*

${ }^{\circ}$ XXXXX
XXXXX
ALYW:
\bullet

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- $\quad=$ Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " \quad ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON04795D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | QFN16 3X3, 0.5P | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C EC4P-221-MRXD1 6EP1332-1SH71 6ES7223-1PH32-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B HMC6832ALP5LE CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805EQGI 49FCT805CTQG 74FCT3807ASOG 74FCT3807EQGI 74FCT388915TEPYG 853S012AKILF 853S013AMILF 853S058AGILF 8V79S680NLGI ISPPAC-CLK5312S-01TN48I ISPPAC-CLK5520V-01TN100I

