2.5 V/3.3 V SiGe Differential Receiver/Driver with RSECL* Outputs

*Reduced Swing ECL

Description

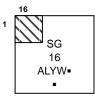
The NBSG16 is a differential receiver/driver targeted for high frequency applications. The device is functionally equivalent to the EP16 and LVEP16 devices with much higher bandwidth and lower EMI capabilities.

Inputs incorporate internal 50 Ω termination resistors and accept NECL (Negative ECL), PECL (Positive ECL), HSTL, LVTTL, LVCMOS, CML, or LVDS. Outputs are RSECL (Reduced Swing ECL), 400 mV.

The V_{BB} and V_{MM} pins are internally generated voltage supplies available to this device only. The V_{BB} is used as a reference voltage for single-ended NECL or PECL inputs and the V_{MM} pin is used as a reference voltage for LVCMOS inputs. For all single-ended input conditions, the unused complementary differential input is connected to V_{BB} or V_{MM} as a switching reference voltage. V_{BB} or V_{MM} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{MM} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} and V_{MM} outputs should be left open.

Features

- Maximum Input Clock Frequency > 12 GHz Typical
- Maximum Input Data Rate > 12 Gb/s Typical
- 120 ps Typical Propagation Delay
- 40 ps Typical Rise and Fall Times
- RSPECL Output with Operating Range: $V_{CC} = 2.375$ V to 3.465 V with $V_{EE} = 0$ V
- RSNECL Output with RSNECL or NECL Inputs with Operating Range: $V_{CC} = 0$ V with $V_{EE} = -2.375$ V to -3.465 V
- RSECL Output Level (400 mV Peak-to-Peak Output), Differential Output Only
- 50 Ω Internal Input Termination Resistors
- Compatible with Existing 2.5 V/3.3 V LVEP, EP, and LVEL Devices
- V_{BB} and V_{MM} Reference Voltage Output
- These are Pb-Free Devices



ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS*

- A = Assembly Location
- = Wafer Lot
- Y = Year

L

- W = Work Week
- = Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.

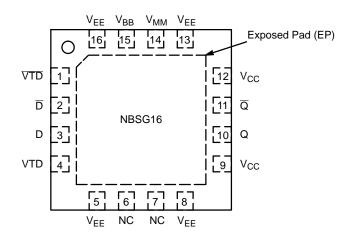


Figure 1. QFN-16 Pinout (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Description
1	VTD	-	Internal 50 Ω Termination Pin. See Table 2.
2	D	ECL, CML, LVCMOS, LVDS, LVTTL Input	Inverted Differential Input. Internal 75 k Ω to V_{EE} and 36.5 k Ω to $V_{CC}.$
3	D	ECL, CML, LVCMOS, LVDS, LVTTL Input	Noninverted differential input. Internal 75 $k\Omega$ to V_{EE}
4	VTD	-	Internal 50 Ω Termination Pin. See Table 2.
5, 8, 13, 16	V _{EE}	-	Negative Supply Voltage
6,7	NC	-	No Connect
9, 12	V _{CC}	-	Positive Supply Voltage
10	Q	RSECL Output	Noninverted Differential Output. Typically Terminated with 50 Ω to V_{TT} = V_{CC} – 2 V
11	Q	RSECL Output	Inverted Differential Output. Typically Terminated with 50 Ω to V _{TT} = V _{CC} – 2 V
14	V _{MM}	-	LVCMOS Reference Voltage Output. (V _{CC} - V _{EE})/2
15	V _{BB}	-	ECL Reference Voltage Output
-	EP	-	The Exposed Pad (EP) on the QFN–16 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is not electrically connected to the die but may be electrically and thermally connected to V_{EE} on the PC board.

All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation. The thermally exposed pad on package bottom (see case drawing) must be attached to a heat-sinking conduit.
 In the differential configuration when the input termination pins (VTD, VTD) are connected to a common termination voltage, and if no signal

is applied then the device will be susceptible to self-oscillation.

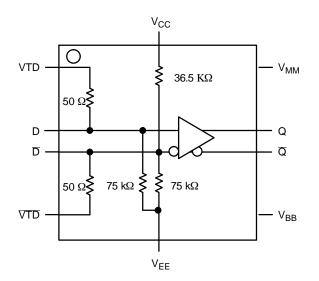


Figure 2. Logic Diagram

Table 2. INTERFACING OPTIONS

INTERFACING OPTIONS	CONNECTIONS
CML	Connect VTD and $\overline{\text{VTD}}$ to V _{CC}
LVDS	Connect VTD and VTD together
AC-COUPLED	Bias VTD and <u>VTD</u> Inputs within (V _{IHCMR}) Common Mode Range
RSECL, PECL, NECL	Standard ECL Termination Techniques
LVTTL	The external voltage should be applied to the unused complementary differential input. Nominal voltage is 1.5 V for LVTTL.
LVCMOS	V _{MM} should be connected to the unused complementary differential input.

Table 3. ATTRIBUTES

Characterist	Value	
Internal Input Pulldown Resistor (D,	75 kΩ	
Internal Input Pullup Resistor (D)	36.5 kΩ	
ESD Protection	Human Body Model Machine Model	> 2 kV > 100 V
Moisture Sensitivity (Note 3)	Pb-Free	Level 1
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V–0 @ 0.125 in
Transistor Count		167
Meets or exceeds JEDEC Spec EIA	/JESD78 IC Latchup Test	

3. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	$V_{EE} = 0 V$		3.6	V
V_{EE}	Negative Power Supply	$V_{CC} = 0 V$		-3.6	V
VI	Positive Input Negative Input	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	3.6 -3.6	V V
V _{INPP}	Differential Input Voltage D – D	$\begin{array}{l} V_{CC} - V_{EE} \geq 2.8 \text{ V} \\ V_{CC} - V_{EE} < 2.8 \text{ V} \end{array}$		2.8 V _{CC} – V _{EE}	V
l _{out}	Output Current	Continuous Surge		25 50	mA
I _{BB}	V _{BB} Sink/Source			1	mA
I _{MM}	V _{MM} Sink/Source			1	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 4)	0 lfpm 500 lfpm		41.6 35.2	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	2S2P (Note 4)		4.0	°C/W
T _{sol}	Wave Solder Pb-Free			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
JEDEC standard multilayer board – 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 5. DC CHARACTERISTICS, INPUT WITH RSPECL OUTPUT

(V_{CC} = 2.5 V; V_{EE} = 0 V) (Note 5)

		–40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Uni
POWER	SUPPLY CURRENT										4
I_{EE}	Negative Power Supply Current	17	23	29	17	23	29	17	23	29	mA
RSPECL	OUTPUTS (Note 6)										
V _{OH}	Output HIGH Voltage	1450	1530	1575	1525	1565	1600	1550	1590	1625	mV
V _{OUTPP}	Output Voltage Amplitude	350	410	525	350	410	525	350	410	525	mV
DIFFERE	NTIAL CLOCK INPUTS DRIVEN SING	GLE-END	ED (Figu	res 5 & 7) (Note 7)			-	-	-	
V _{IH}	Input HIGH Voltage	1200		V _{CC}	1200		V _{CC}	1200		V _{CC}	mV
V _{IL}	Input LOW Voltage	0		V _{IH} – 150	0		V _{IH} – 150	0		V _{IH} – 150	mV
V _{th}	Input Threshold Voltage Range (Note 8)	950		V _{CC} - 75	950		V _{CC} - 75	950		V _{CC} - 75	mV
V_{ISE}	Single-Ended Input Voltage $(V_{IH} - V_{IL})$	150		2600	150		2600	150		260	mV
V_{BB}	PECL Output Voltage Reference	1080	1140	1200	1080	1140	1200	1080	1140	1200	mν
DIFFERE	NTIAL INPUTS DRIVEN DIFFERENT	ALLY (Fi	gures 6 &	8) (Note	9)			-	-	-	
V _{IHD}	Differential Input HIGH Voltage	1200		V _{CC}	1200		V _{CC}	1200		V _{CC}	mV
V _{ILD}	Differential Input LOW Voltage	0		V _{IHD} – 75	0		V _{IHD} – 75	0		V _{IHD} – 75	mV
V_{ID}	Differential Input Voltage (V _{IHD} – V _{ILD})	75		2600	75		2600	75		2600	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Note 10) (Figure 9)	1200		2500	1200		2500	1200		2500	mV
I _{IH}	Input HIGH Current (@V _{IH})		30	100		30	100		30	100	μΑ
۱ _{IL}	Input LOW Current (@VIL)		25	50		25	50		25	50	μΑ
LVCMOS	CONTROL PIN										
V _{MM}	CMOS Output Voltage Reference $V_{CC}/2$	1100	1250	1400	1100	1250	1400	1100	1250	1400	mV
TERMINA	ATION RESISTORS										
R _{TIN}	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω

otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

5. Input and output parameters vary 1:1 with V_{CC}.

6. All loading with 50 Ω to V_{CC} – 2.0 V. 7. V_{th}, V_{IH}, V_{IL}, and V_{ISE} parameters must be complied with simultaneously. 8. V_{th} is applied to the complementary input when operating in single-ended mode. V_{th} = (V_{IH} – V_{IL}) / 2.

9. V_{IHD} , V_{ILD} , V_{ILD} , V_{ID} and V_{IHCMR} parameters must be complied with simultaneously. 10. V_{IHCMR} min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 6. DC CHARACTERISTICS, INPUT WITH RSPECL OUTPUT

(V_{CC} = 3.3 V; V_{EE} = 0 V) (Note 11)

		−40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
POWER	SUPPLY CURRENT										<u>.</u>
I_{EE}	Negative Power Supply Current	17	23	29	17	23	29	17	23	29	mA
RSPECL	OUTPUTS (Note 12)										
V _{OH}	Output HIGH Voltage	2250	2330	2375	2325	2365	2400	2350	2390	2425	m۷
V _{OUTPP}	Output Voltage Amplitude	350	410	525	350	410	525	350	410	525	m۷
DIFFERE	NTIAL CLOCK INPUTS DRIVEN SING	GLE-END	ED (Figu	res 5 & 7) (Note 1	3)					
VIH	Input HIGH Voltage	1200		V _{CC}	1200		V _{CC}	1200		V _{CC}	m۷
V _{IL}	Input LOW Voltage	0		V _{IH} – 150	0		V _{IH} – 150	0		V _{IH} – 150	mV
V _{th}	Input Threshold Voltage Range (Note 14)	950		V _{CC} – 75	950		V _{CC} – 75	950		V _{CC} – 75	mV
V _{ISE}	Single-Ended Input Voltage $(V_{IH} - V_{IL})$	150		2600	150		2600	150		260	mV
V_{BB}	PECL Output Voltage Reference	1880	1940	2000	1880	1940	2000	1880	1940	2000	m٧
DIFFERE	NTIAL INPUTS DRIVEN DIFFERENT	ALLY (Fi	gures 6 8	8) (Note	15)						
V _{IHD}	Differential Input HIGH Voltage	1200		V _{CC}	1200		V _{CC}	1200		V _{CC}	mV
V _{ILD}	Differential Input LOW Voltage	0		V _{IHD} – 75	0		V _{IHD} – 75	0		V _{IHD} – 75	mV
V_{ID}	Differential Input Voltage (V _{IHD} – V _{ILD})	75		2600	75		2600	75		2600	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Note 16) (Figure 9)	1200		3300	1200		3300	1200		3300	mV
I _{IH}	Input HIGH Current (@V _{IH})		30	100		30	100		30	100	μA
IIL	Input LOW Current (@VIL)		25	50		25	50		25	50	μA
LVCMOS	CONTROL PIN										
V _{MM}	CMOS Output Voltage Reference $V_{CC}/2$	1500	1650	1800	1500	1650	1800	1500	1650	1800	m∨
TERMINA	ATION RESISTORS										
R _{TIN}	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω

performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

11. Input and output parameters vary 1:1 with V_{CC}.

12. All loading with 50 Ω to V_{CC} – 2.0 V. 13. V_{th}, V_{IH}, V_{IL}, and V_{ISE} parameters must be complied with simultaneously.

14. V_{th} is applied to the complementary input when operating in single-ended mode. V_{th} = (V_{IH} - V_{IL}) / 2.

15. V_{IHD} , V_{ILD} , V_{ILD} , V_{ID} and V_{IHCMR} parameters must be complied with simultaneously. 16. V_{IHCMR} min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 7. DC CHARACTERISTICS, NECL or RSNECL INPUT WITH NECL OUTPUT

 $(V_{CC} = 0 \text{ V}; V_{FF} = -3.465 \text{ V} \text{ to } -2.375 \text{ V})$ (Note 17)

			–40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
POWER	SUPPLY CURRENT										
I_{EE}	Negative Power Supply Current	17	23	29	17	23	29	17	23	29	mA
RSPECL	OUTPUTS (Note 18)		-					-		-	
V _{OH}	Output HIGH Voltage	-1050	-970	-925	-975	-935	-900	-950	-910	-875	mV
V _{OUTPP}	Output Voltage Amplitude	350	410	525	350	410	525	350	410	525	mV
DIFFERE	NTIAL CLOCK INPUTS DRIVEN SING	GLE-END	ED (Figu	res 5 & 7) (Note 19	9)					
V _{IH}	Input HIGH Voltage	V _{EE} + 1200		V _{CC}	V _{EE} + 1200		V _{CC}	V _{EE} + 1200		V _{CC}	mV
V _{IL}	Input LOW Voltage	V _{EE}		V _{IH} – 150	V _{EE}		V _{IH} – 150	V _{EE}		V _{IH} – 150	mV
V _{th}	Input Threshold Voltage Range (Note 20)	V _{EE} + 950		V _{CC} – 75	V _{EE} + 950		V _{CC} – 75	V _{EE} + 950		V _{CC} – 75	mV
V _{ISE}	Single-Ended Input Voltage $(V_{IH} - V_{IL})$	150		2600	150		2600	150		260	mV
V_{BB}	NECL Output Voltage Reference	-1420	-1360	-1300	-1420	-1360	-1300	-1420	-1360	-1300	mV
DIFFERE	NTIAL INPUTS DRIVEN DIFFERENT	ALLY (Fig	gures 6 8	8) (Note	21)						
V _{IHD}	Differential Input HIGH Voltage	V _{EE} + 1200		V _{CC}	V _{EE} + 1200		V _{CC}	V _{EE} + 1200		V _{CC}	mV
V _{ILD}	Differential Input LOW Voltage	V _{EE}		V _{IHD} – 75	V _{EE}		V _{IHD} – 75	V _{EE}		V _{IHD} – 75	mV
V _{ID}	Differential Input Voltage (V _{IHD} – V _{ILD})	75		2600	75		2600	75		2600	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 22) (Figure 9)	V _{EE} + 1200		0	V _{EE} + 1200		0	V _{EE} + 1200		0	mV
I _{IH}	Input HIGH Current (@V _{IH})		30	100		30	100		30	100	μΑ
Ι _{ΙL}	Input LOW Current (@VIL)		25	50		25	50		25	50	μΑ
LVCMOS	CONTROL PIN (Note 23)										
V _{MM}	CMOS Output Voltage Reference V _{CC} /2	V _{MM} – 150	V _{MM}	V _{MM} + 150	V _{MM} – 150	V _{MM}	V _{MM} + 150	V _{MM} – 150	V _{MM}	V _{MM} + 150	mV
TERMINA	TION RESISTORS	-	-	-	-	-	-	•	-	•	
R _{TIN}	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

17. Input and output parameters vary 1:1 with V_{CC}.

18. All loading with 50 Ω to V_{CC} – 2.0 V. 19. V_{th}, V_{IH}, V_{IL}, and V_{ISE} parameters must be complied with simultaneously.

20. V_{th} is applied to the complementary input when operating in single-ended mode. $V_{th} = (V_{IH} - V_{IL})/2$.

21. V_{IHD} , V_{ILD} , V_{ID} and V_{IHCMR} parameters must be complied with simultaneously. 22. V_{IHCMR} min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

23. V_{MM} typical = $|V_{CC} - V_{EE}|/2 + V_{EE} = V_{MMT}$

Table 8. AC CHARACTERISTICS

 $(V_{CC} = 0 \text{ V}; V_{EE} = -3.465 \text{ V} \text{ to } -2.375 \text{ V} \text{ or } V_{CC} = 2.375 \text{ V} \text{ to } 3.465 \text{ V}; V_{EE} = 0 \text{ V})$

		−40°C			25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
f _{max}	Maximum Input Clock Frequency (See Figure 3. f _{max} /JITTER) (Note 24)	10.7	12		10.7	12		10.7	12		GHz	
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential	90	110	130	100	120	140	95	125	145	ps	
t _{SKEW}	Duty Cycle Skew (Note 25)		3	15		3	15		3	15	ps	
^t JITTER	RMS Random Clock Jitter f _{in} < 10 GHz Peak–to–Peak Data Dependent Jitter f _{in} < 10 Gb/s		0.2 8	2		0.2 8	2		0.2 8	2	ps	
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 26)	75		2600	75		2600	75		2600	mV	
t _r t _f	Output Rise/Fall Times @ 1 GHz Q, Q (20% – 80%)	20	30	50	20	30	50	20	30	50	ps	

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit

values are applied individually under normal operating conditions and not valid simultaneously.

24. Measured using a 400 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} - 2.0 V. Input edge rates 40 ps (20% - 80%). 25. See Figure 10. $t_{skew} = |t_{PLH} - t_{PHL}|$ for a nominal 50% differential clock input waveform. 26. $V_{INPP(max)}$ cannot exceed $V_{CC} - V_{EE}$

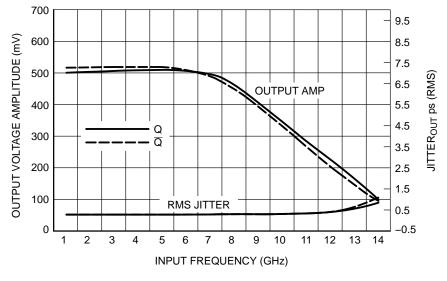
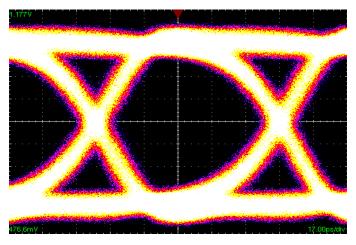



Figure 3. Output Voltage Amplitude (V_{OUTPP}) / RMS Jitter vs. Input Frequency (f_{in}) at Ambient Temperature (Typical)

X = 17ps/Div Y = 70 mV/Div

Figure 4. 10.709 Gb/s Diagram (3.0 V, 25°C)

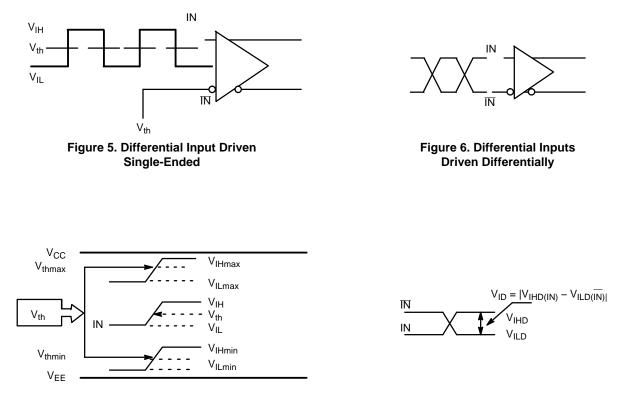
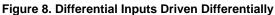
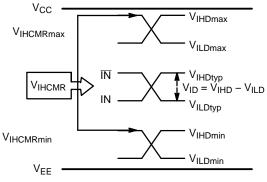




Figure 7. V_{th} Diagram

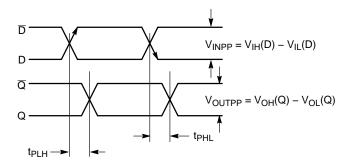


Figure 10. AC Reference Measurement

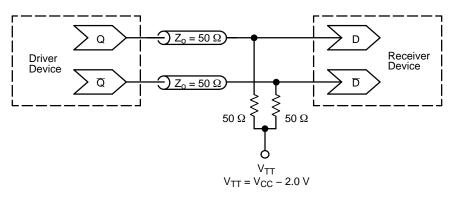
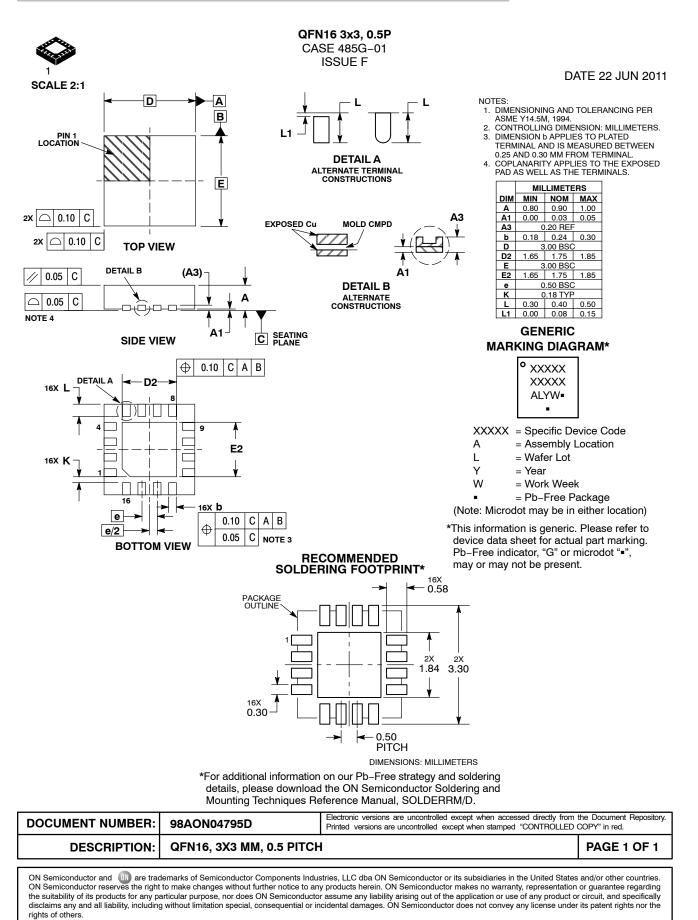


Figure 11. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION


Device	Package	Shipping [†]
NBSG16MNG	QFN-16 (Pb-Free / Halide-Free)	123 Units / Tube
NBSG16MNR2G	QFN-16 (Pb-Free / Halide-Free)	3000 / Tape & Reel
NBSG16MNHTBG	QFN-16 (Pb-Free / Halide-Free)	100 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

The products described herein (NBSG16), may be covered by U.S. patents including 6,362,644. There may be other patents pending.

ON Semiconductor®

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:

Other Similar products are found below :

1.5SMC82AT3G 74LCX574WM STK621-068C-E NBXSBA017LN1TAG KAF-3200-ABA-CP-B2 STK621-728S-E AMIS30621AUA STK531U340A-E STK760-304-E FJAF6810DTU DBD250G STK621-713-E TIP115 LB11847-E NBXHBA017LN1TAG LV8736V-MPB-H NCP694H12HT1G LA4631VC-XE CAT1025WI-25-G NDF04N60ZG-001 LA78040B-S-E LA6584M-MPB-E NVB60N06T4G LA6245P-CL-TLM-E STK621-043D-E BTA30H-600CW3G P6SMB100AT3G NCP1129AP100G LV8406T-TLM-E MC100EL13DWG FW217A-TL-2WX MC33201DG KA78L05AZTA FST3126MX LV4904V-MPB-E STK672-400 SBM30-03-TR-E NCP1398BDR2G BTA25H-600CW3G LC89057W-VF4A-E CPH6531-TL-E NCP4683DSQ28T1G MC78L08ACP SA5230DR2G NCP694D25HT1G CAT25020VE-GT3 MC10EP142FAG CAT1832L-G CAT93C56VP2I-GT3 NCP4625DSN50T1G