2.5 V/3.3 V Multilevel Input to CML Clock/Data Receiver/Driver/Translator Buffer

Description

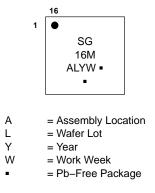
The NBSG16M is a differential current mode logic (CML) receiver/driver/translator buffer. The device is functionally equivalent to the EP16, LVEP16, or SG16 devices with CML output structure and lower EMI capabilities.

Inputs incorporate internal 50 Ω termination resistors and accept LVNECL (Negative ECL), LVPECL (Positive ECL), LVTTL, LVCMOS, CML, or LVDS. The CML output structure contains internal 50 Ω source termination resistor to V_{CC} . The device generates 400 mV output amplitude with 50 Ω receiver resistor to V_{CC} .

The V_{BB} pin is internally generated voltage supply available to this device only. For all single-ended input conditions, the unused complementary differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} output should be left open.

Features

- Maximum Input Clock Frequency > 10 GHz Typical
- Maximum Input Data Rate > 10 Gb/s Typical
- 120 ps Typical Propagation Delay
- 35 ps Typical Rise and Fall Times
- Positive CML Output with Operating Range: $V_{CC} = 2.375 \text{ V}$ to 3.465 V with $V_{EE} = 0 \text{ V}$
- Negative CML Output with RSNECL or NECL Inputs with Operating Range: $V_{CC} = 0$ V with $V_{EE} = -2.375$ V to -3.465 V
- CML Output Level; 400 mV Peak-to-Peak Output with 50 Ω Receiver Resistor to V_{CC}
- 50 Ω Internal Input and Output Termination Resistors
- Compatible with Existing 2.5 V/3.3 V LVEP, EP, LVEL and SG Devices
- V_{BB} Reference Voltage Output
- These are Pb-Free Devices



ON Semiconductor®

http://onsemi.com

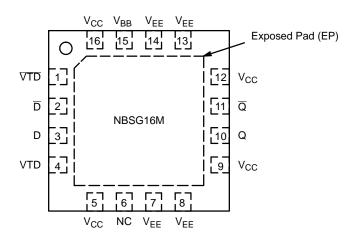
MARKING DIAGRAM*

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.



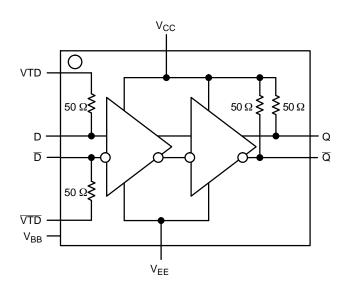

Figure 1. QFN-16 Pinout (Top View)

Table	1.	PIN	DESC	CRIP	TION
-------	----	-----	------	------	------

Pin	Name	I/O	Description
1	$\overline{V_{TD}}$	-	Internal 50 Ω Termination Pin. See Table 2. (Note 2)
2	D	LVDS, CML, ECL, LVTTL, LVCMOS Input	Inverted Differential Input (Note 2)
3	D	LVDS, CML, ECL, LVTTL, LVCMOS Input	Noninverted Differential Input. (Note 2)
4	V _{TD}	-	Internal 50 Ω Termination Pin. See Table 2. (Note 2)
5	V _{CC}	-	Positive Supply Voltage. All V_{CC} pins must be externally connected to Power Supply to guarantee proper operation.
6	NC	-	No Connect
7	V _{EE}	-	Negative Supply Voltage. All V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.
8	V _{EE}	-	Negative Supply Voltage. All V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.
9	V _{CC}	-	Positive Supply Voltage. All V_{CC} pins must be externally connected to Power Supply to guarantee proper operation.
10	Q	CML Output	Noninverted CML Differential Output with Internal 50 Ω Source Termination Resistor. (Note 1)
11	Q	CML Output	Inverted CML Differential Output with Internal 50 Ω Source Termination Resistor. (Note 1)
12	V _{CC}	-	Positive Supply Voltage. All V_{CC} pins must be externally connected to Power Supply to guarantee proper operation.
13	V _{EE}	-	Negative Supply Voltage. All V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.
14	V _{EE}	-	Negative Supply Voltage. All V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.
15	V _{BB}	-	Internally Generated ECL Reference Output Voltage
16	V _{CC}	-	Positive Supply Voltage. All V_{CC} pins must be externally connected to Power Supply to guarantee proper operation.
-	EP	-	The Exposed Pad (EP) on the QFN-16 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is not electrically connected to the die but may be electrically and thermally connected to V_{EE} on the PC board.

1. CML outputs require 50 Ω receiver termination resistor to V_{CC} for proper operation.

In the differential configuration when the input termination pin (V_{TD}, V_{TD}) are connected to a common termination voltage, and if no signal is applied then the device will be susceptible to self-oscillation.

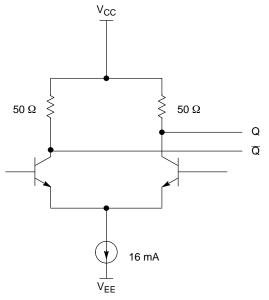
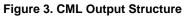



Figure 2. Logic Diagram

|--|

INTERFACING OPTIONS	CONNECTIONS
CML	Connect VTD and $\overline{\text{VTD}}$ to V_{CC}
LVDS	Connect VTD and VTD together
AC-COUPLED	Bias VTD and VTD Inputs within (V _{IHCMR}) Common Mode Range
RSECL, PECL, NECL	Standard ECL Termination Techniques
LVTTL, LVCMOS	An external voltage should be applied to the unused complementary differential input. Nominal voltage 1.5 V for LVTTL and $V_{CC}/2$ for LVCMOS inputs.

Table 3. ATTRIBUTES

Characte	Characteristics							
ESD Protection	> 1 kV > 100 V > 4 kV							
Moisture Sensitivity, Indefinite Ti	Lev	el 1						
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V–0	@ 0.125 in					
Transistor Count		14	45					
Meets or exceeds JEDEC Spec	EIA/JESD78 IC Latchup Test							

3. For additional Moisture Sensitivity information, refer to Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	$V_{EE} = 0 V$		3.6	V
V_{EE}	Negative Power Supply	$V_{CC} = 0 V$		-3.6	V
VI	Positive Input Negative Input	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	3.6 -3.6	V
V _{INPP}	Differential Input Voltage D – D	$\begin{array}{l} V_{CC} - V_{EE} \geq 2.8 \text{ V} \\ V_{CC} - V_{EE} < 2.8 \text{ V} \end{array}$		2.8 V _{CC} – V _{EE}	V
I _{IN}	Input Current Through R_T (50 Ω Resistor)	Static Surge		45 80	mA
I _{out}	Output Current	Continuous Surge		25 50	mA
I _{BB}	V _{BB} Sink/Source			1.0	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 4)	0 lfpm 500 lfpm		42 35	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	1S2P (Note 4)		4.0	°C/W
T _{sol}	Wave Solder Pb-Free	<2 to 3 sec @ 260°C		265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 4. JEDEC standard multilayer board – 1S2P (1 signal, 2 power)

Table 5. DC CHARACTERISTICS, POSITIVE CML OUTPUT

(V_{CC} = 2.5 V; V_{EE} = 0 V) (Note 5)

			–40°C			25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
POWER	SUPPLY CURRENT						•				
I _{CC}	Positive Power Supply Current	37	43	51	37	43	51	37	43	51	mA
CML OU	TPUTS (Note 6)	-			-	-	-	-			
V _{OH}	Output HIGH Voltage	V _{CC} – 40	V _{CC} – 10	V _{CC}	V _{CC} – 40	V _{CC} - 10	V _{CC}	V _{CC} – 40	V _{CC} - 10	V _{CC}	mV
V _{OL}	Output LOW Voltage		V _{CC} – 400	V _{CC} – 330		V _{CC} - 400	V _{CC} – 330		V _{CC} – 400	V _{CC} – 330	mV
DIFFERE	NTIAL CLOCK INPUTS DRIVEN SING	GLE-END	ED (Figu	res 8 & 1	0) (Note	7)	-	-			
V_{IH}	Input HIGH Voltage	1200		V _{CC}	1200		V _{CC}	1200		V _{CC}	mV
V _{IL}	Input LOW Voltage	0		V _{IH} – 150	0		V _{IH} – 150	0		V _{IH} – 150	mV
V _{th}	Input Threshold Voltage Range (Note 8)	950		V _{CC} - 75	950		V _{CC} – 75	950		V _{CC} – 75	mV
V _{ISE}	Single-Ended Input Voltage $(V_{IH} - V_{IL})$	150		2600	150		2600	150		260	mV
V_{BB}	ECL Reference Output Voltage	1075	1170	1265	1075	1170	1265	1075	1170	1265	mV
DIFFERE	INTIAL INPUTS DRIVEN DIFFERENT	ALLY (Fi	gures 9 8	. 11) (Not	e 9)						
V_{IHD}	Differential Input HIGH Voltage	1200		V _{CC}	1200		V _{CC}	1200		V _{CC}	mV
V _{ILD}	Differential Input LOW Voltage	0		V _{IHD} – 75	0		V _{IHD} – 75	0		V _{IHD} – 75	mV
V _{ID}	Differential Input Voltage (V _{IHD} – V _{ILD})	75		2600	75		2600	75		2600	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 10) (Figure 12)	1200		2500	1200		2500	1200		2500	mV
I _{IH}	Input HIGH Current (@V _{IH})		60	100		60	100		60	100	μΑ
۱ _{IL}	Input LOW Current (@VIL)		25	50		25	50		25	50	μΑ
TERMINA	ATION RESISTORS										
D	Internal Input Termination Register	45	50	55	45	50	55	45	50	55	

R _{TIN}	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω
R _{TOUT}	Internal Output Termination Resistor	45	50	55	45	50	55	45	50	55	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

5. Input and output parameters vary 1:1 with V_{CC} . 6. All loading with 50 Ω to V_{CC} – 2.0 V. 7. V_{th} , V_{IH} , V_{IL} , and V_{ISE} parameters must be complied with simultaneously. 8. V_{th} is applied to the complementary input when operating in single-ended mode. $V_{th} = (V_{IH} - V_{IL}) / 2$.

 V_{IHD}, V_{ILD}, V_{ID} and V_{IHCMR} parameters must be complied with simultaneously.
V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 6. DC CHARACTERISTICS, POSITIVE CML OUTPUT

(V_{CC} = 3.3 V; V_{EE} = 0 V) (Note 11)

			–40°C			25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
POWER	SUPPLY CURRENT										
I _{CC}	Positive Power Supply Current	37	43	51	37	43	51	37	43	51	mA
CML OU	TPUTS (Note 12)										
V _{OH}	Output HIGH Voltage	V _{CC} – 40	V _{CC} – 10	V _{CC}	V _{CC} – 40	V _{CC} – 10	V _{CC}	V _{CC} – 40	V _{CC} – 10	V _{CC}	mV
V _{OL}	Output LOW Voltage		V _{CC} – 400	V _{CC} – 330		V _{CC} – 400	V _{CC} – 330		V _{CC} – 400	V _{CC} – 330	mV
DIFFERE	NTIAL CLOCK INPUTS DRIVEN SING	GLE-END	DED (Figu	res 8 & 1	0) (Note	13)					
V_{IH}	Input HIGH Voltage	1200		V _{CC}	1200		V _{CC}	1200		V _{CC}	mV
V _{IL}	Input LOW Voltage	0		V _{IH} – 150	0		V _{IH} – 150	0		V _{IH} – 150	mV
V _{th}	Input Threshold Voltage Range (Note 14)	950		V _{CC} – 75	950		V _{CC} – 75	950		V _{CC} – 75	mV
V _{ISE}	Single-Ended Input Voltage $(V_{IH} - V_{IL})$	150		2600	150		2600	150		260	mV
V_{BB}	ECL Reference Voltage Output	1875	1970	2065	1875	1970	2065	1875	1970	2065	mV
DIFFERE	NTIAL INPUTS DRIVEN DIFFERENT	ALLY (Fi	gures 9 8	. 11) (Not	e 15)			-			
V_{IHD}	Differential Input HIGH Voltage	1200		V _{CC}	1200		V _{CC}	1200		V _{CC}	mV
V _{ILD}	Differential Input LOW Voltage	0		V _{IHD} – 75	0		V _{IHD} – 75	0		V _{IHD} – 75	mV
V _{ID}	Differential Input Voltage (V _{IHD} – V _{ILD})	75		2600	75		2600	75		2600	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 16) (Figure 12)	1200		3300	1200		3300	1200		3300	mV
I _{IH}	Input HIGH Current (@VIH)		60	100		60	100		60	100	μΑ
۱ _{IL}	Input LOW Current (@VIL)		25	50		25	50		25	50	μΑ
TERMINA	ATION RESISTORS										
D							r		T		1

R _{TIN}	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω
R _{TOUT}	Internal Output Termination Resistor	45	50	55	45	50	55	45	50	55	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

11. Input and output parameters vary 1:1 with V_{CC} .

11. Input and output parameters vary 1:1 with v_{CC} . 12. All loading with 50 Ω to $V_{CC} - 2.0$ V. 13. V_{th} , V_{IH} , V_{IL} , and V_{ISE} parameters must be complied with simultaneously. 14. V_{th} is applied to the complementary input when operating in single-ended mode. $V_{th} = (V_{IH} - V_{IL}) / 2$.

 V_{IHD}, V_{ILD}, V_{ID} and V_{IHCMR} parameters must be complied with simultaneously.
V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 7. DC CHARACTERISTICS, NEGATIVE CML OUTPUT

 $(V_{CC} = 0 \text{ V}; V_{FF} = -3.465 \text{ V} \text{ to } -2.375 \text{ V})$ (Note 17)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	Unit
POWER	SUPPLY CURRENT										
I _{CC}	Positive Power Supply Current	37	43	51	37	43	51	37	43	51	mA
CML OU	TPUTS (Note 18)										-
V _{OH}	Output HIGH Voltage	V _{CC} – 40	V _{CC} – 10	V _{CC}	V _{CC} – 40	V _{CC} – 10	V _{CC}	V _{CC} – 40	V _{CC} – 10	V _{CC}	mV
V _{OL}	Output LOW Voltage		V _{CC} – 400	V _{CC} – 330		V _{CC} – 400	V _{CC} – 330		V _{CC} – 400	V _{CC} – 330	mV
DIFFERE	NTIAL CLOCK INPUTS DRIVEN SING	GLE-END	ED (Figu	res 8 & 1	0) (Note ⁻	19)					-
V _{IH}	Input HIGH Voltage	V _{EE} + 1200		V _{CC}	V _{EE} + 1200		V _{CC}	V _{EE} + 1200		V _{CC}	mV
V _{IL}	Input LOW Voltage	V _{EE}		V _{IH} – 150	V _{EE}		V _{IH} – 150	V _{EE}		V _{IH} – 150	mV
V _{th}	Input Threshold Voltage Range (Note 20)	V _{EE} + 950		V _{CC} – 75	V _{EE} + 950		V _{CC} – 75	V _{EE} + 950		V _{CC} – 75	mV
V_{ISE}	Single-Ended Input Voltage $(V_{IH} - V_{IL})$	150		2600	150		2600	150		260	mV
V_{BB}	ECL Reference Voltage Output	-1425	-1330	-1235	-1425	-1330	-1235	-1425	-1330	-1235	mV
DIFFERE	NTIAL INPUTS DRIVEN DIFFERENT	IALLY (Fig	gures 9 &	11) (Not	e 21)						
V _{IHD}	Differential Input HIGH Voltage	V _{EE} + 1200		V _{CC}	V _{EE} + 1200		V _{CC}	V _{EE} + 1200		V _{CC}	mV
V _{ILD}	Differential Input LOW Voltage	V _{EE}		V _{IHD} – 75	V _{EE}		V _{IHD} – 75	V _{EE}		V _{IHD} – 75	mV
V_{ID}	Differential Input Voltage (V _{IHD} – V _{ILD})	75		2600	75		2600	75		2600	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 22) (Figure 12)	V _{EE} + 1200		V _{CC}	V _{EE} + 1200		V _{CC}	V _{EE} + 1200		V _{CC}	mV
I _{IH}	Input HIGH Current (@VIH)		60	100		60	100		60	100	μΑ
IIL	Input LOW Current (@VIL)		25	50		25	50		25	50	μA
TERMINA	ATION RESISTORS	-			-	-	-	-	-		<u>e</u>

R _{TIN}	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω
R _{TOUT}	Internal Output Termination Resistor	45	50	55	45	50	55	45	50	55	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

17. Input and output parameters vary 1:1 with V_{CC}.

18. All loading with 50 Ω to V_{CC} – 2.0 V.

19. V_{th} , V_{IH} , V_{IL} , and V_{ISE} parameters must be complied with simultaneously. 20. V_{th} is applied to the complementary input when operating in single-ended mode. $V_{th} = (V_{IH} - V_{IL}) / 2$.

21. VIHD, VILD, VID and VIHCMR parameters must be complied with simultaneously.

22. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

Table 8. AC CHARACTERISTICS

 $(V_{CC} = 0 \text{ V}; V_{EE} = -3.465 \text{ V} \text{ to } -2.375 \text{ V} \text{ or } V_{CC} = 2.375 \text{ V} \text{ to } 3.465 \text{ V}; V_{EE} = 0 \text{ V})$

			−40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OUTPP}			400 250		300 200	400 250		300 100	400 150		mV
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential	90	110	150	100	120	150	100	125	155	ps
t _{SKEW}	Duty Cycle Skew (Note 24)		3	15		3	15		3	15	ps
^t JITTER	RMS Random Clock Jitter (Note 26) f _{in} < 10 GHz Peak-to-Peak Data Dependent Jitter (Note 27) f _{in} < 10 Gb/s		0.2 8	1 15		0.2 8	1 15		0.2 8	1.0 15	ps
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 25)	75		2500	75		2500	75		2500	mV
t _r t _f	Output Rise/Fall Times @ 1 GHz Q, Q (20% – 80%)	21	35	53	21	35	53	21	35	53	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

23. Measured using a 400 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC}. Input edge rates 40 ps (20% – 80%).

24. See Figure 13 $t_{skew} = |t_{PLH} - t_{PHL}|$ for a nominal 50% differential clock input waveform. 25. $V_{INPP(max)}$ cannot exceed $V_{CC} - V_{EE}$. (Applicable only when $V_{CC} - V_{EE} < 2500$ mV). Input voltage swing is a single-ended measurement operating in differential mode.

26. Additive RMS jitter with 50% duty cycle clock signal at 10GHz.

27. Additive Peak-to-Peak data dependent jitter with NRZ PRBS2³¹-1 data rate at 10 Gb/s.

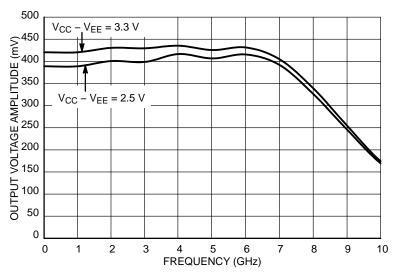
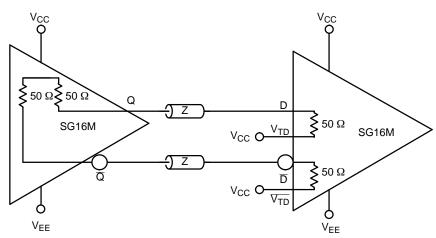
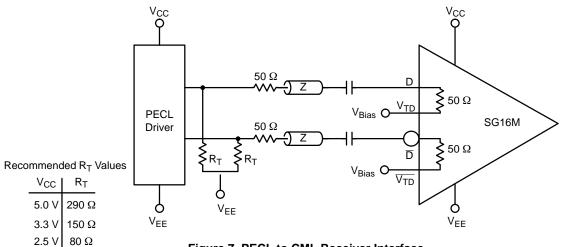
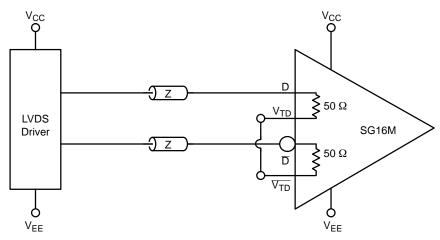


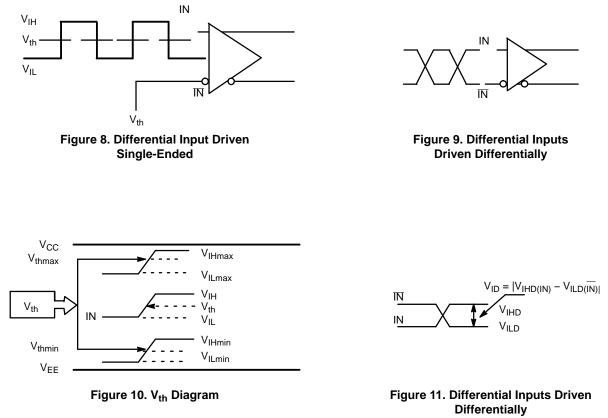
Figure 4. Output Voltage Amplitude (VOUTPP) versus Input Clock Frequency (fin) at Ambient Temperature (Typical)

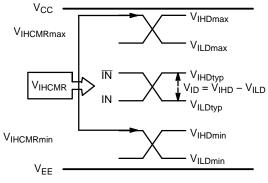
Application Information

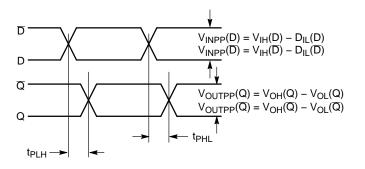
All inputs can accept PECL, CML, and LVDS signal levels. The input voltage can range from V_{CC} to 1.2 V.

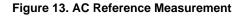
Examples interfaces are illustrated below in a 50 Ω environment (Z = 50 Ω).

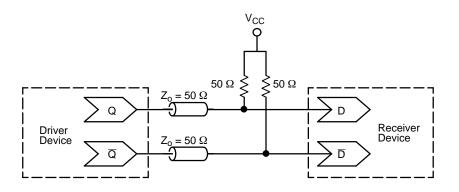




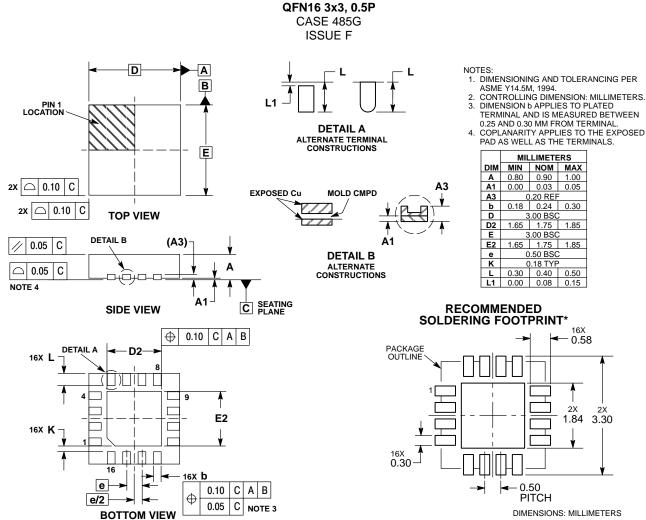

Figure 5. CML to CML Interface










Figure 14. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020 – Termination of ECL Logic Devices)

ORDERING INFORMATION

Device	Package	Shipping [†]			
NBSG16MMNG	QFN-16 (Pb-Free / Halide-Free)	123 Units / Tube			
NBSG16MMNR2G	QFN-16 (Pb-Free / Halide-Free)	3000 / Tape & Reel			

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

The products described herein (NBSG16M), may be covered by U.S. patents including 6,362,644. There may be other patents pending.

ON Semiconductor and **()** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILLC haves no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distibutors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death masociated with such unintended or unauthorized use, even if such claim alleges that SCIL

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 5962-8982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG LE87100NQC LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NLV74VHC125DTR2G NL17SG126DFT2G