TinyLogic ULP-A Triple Buffer

NC7NP34

The NC7NP34 is a triple buffer in tiny footprint packages. The device is designed to operate for $\mathrm{V}_{\mathrm{CC}}=0.9 \mathrm{~V}$ to 3.6 V .

Features

- Designed for 0.9 V to $3.6 \mathrm{~V}_{\mathrm{CC}}$ Operation
- $2.7 \mathrm{~ns}_{\mathrm{t}_{\mathrm{PD}}}$ at 3.3 V (Typ)
- Inputs/Outputs Over-Voltage Tolerant up to 3.6 V
- I IFFF Supports Partial Power Down Protection
- Source/Sink 2.6 mA at 3.3 V
- Available in US8 and MicroPak ${ }^{\text {TM }}$ Packages
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Figure 1. Pinout Diagrams (Top Views)

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 6 of this data sheet.

PIN ASSIGNMENT

Pin	US8	UQFN8
1	A1	Y1
2	Y3	A3
3	A2	Y2
4	GND	GND
5	Y2	A2
6	A3	Y3
7	Y1	A1
8	$V_{C C}$	$V_{C C}$

FUNCTION TABLE

A Input	Y Output
L	L
H	H

NC7NP34

MAXIMUM RATINGS

Symbol	Characteristics	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to +4.3	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage	-0.5 to +4.3	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode ($\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)	$\begin{gathered} -0.5 \text { to } V_{C C}+0.5 \\ -0.5 \text { to }+4.3 \\ -0.5 \text { to }+4.3 \end{gathered}$	V
I_{K}	DC Input Diode Current $\quad \mathrm{V}_{\text {IN }}<\mathrm{GND}$	-50	mA
lok	DC Output Diode Current $\quad \mathrm{V}_{\text {OUT }}<\mathrm{GND}$	-50	mA
Iout	DC Output Source/Sink Current	± 50	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC Supply Current per Supply Pin or Ground Pin	± 50	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	+150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Note 2) $\begin{array}{r}\text { US8 } \\ \text { MicroPak }\end{array}$	$\begin{aligned} & 250 \\ & 210 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation in Still Air $\begin{array}{r}\text { US8 } \\ \text { MicroPak }\end{array}$	$\begin{aligned} & 500 \\ & 595 \end{aligned}$	mW
MSL	Moisture Sensitivity	Level 1	-
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
$\mathrm{V}_{\mathrm{ESD}}$	ESD Withstand Voltage (Note 3) $\begin{gathered}\text { Human Body Model } \\ \text { Charged Device Model }\end{gathered}$	$\begin{array}{r} 2000 \\ 1000 \\ \hline \end{array}$	V
ILatchup	Latchup Performance (Note 4)	± 100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Applicable to devices with outputs that may be tri-stated.
2. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2 ounce copper trace no air flow per JESD51-7.
3. HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued.
4. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	Positive DC Supply Voltage		0.9	3.6	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage		0	3.6	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage	Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & 3.6 \\ & 3.6 \end{aligned}$	
T_{A}	Operating Temperature Range		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Transition Rise and Fall Time	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	0	10	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	High-Level Input Voltage		0.9	-	0.5	-	-	-	V
			1.1 to 1.3	$0.65 \times \mathrm{V}_{\mathrm{CC}}$	-	-	$0.65 \times \mathrm{V}_{\mathrm{CC}}$	-	
			1.4 to 1.6	$0.65 \times V_{C C}$	-	-	$0.65 \times V_{C C}$	-	
			1.65 to 1.95	$0.65 \times \mathrm{V}_{\mathrm{CC}}$	-	-	$0.65 \times \mathrm{V}_{\text {CC }}$	-	
			2.3 to 2.7	1.6	-	-	1.6	-	
			3.0 to 3.6	2.1	-	-	2.1	-	
V_{IL}	Low-Level Input Voltage		0.9	-	0.5	-	-	-	V
			1.1 to 1.3	-	-	$0.35 \times V_{C C}$	-	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	
			1.4 to 1.6	-	-	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	
			1.65 to 1.95	-	-	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	
			2.3 to 2.7	-	-	0.7	-	0.7	
			3.0 to 3.6	-	-	0.9	-	0.9	
V_{OH}	High-Level Output Voltage	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$							V
		$\mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A}$	0.9	-	$\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{CC}}- \\ 0.1 \end{array}$	-	-	-	
			1.1 to 1.3	$\mathrm{V}_{\mathrm{CC}}-0.1$	-	-	$\mathrm{V}_{\mathrm{CC}}-0.1$	-	
			1.4 to 1.6	$\mathrm{V}_{\mathrm{CC}}-0.1$	-	-	$\mathrm{V}_{\mathrm{CC}}-0.1$	-	
			1.65 to 1.95	$\mathrm{V}_{\mathrm{CC}}-0.1$	-	-	$\mathrm{V}_{\mathrm{CC}}-0.1$	-	
			2.3 to 2.7	$\mathrm{V}_{\mathrm{CC}}-0.1$	-	-	$\mathrm{V}_{\mathrm{CC}}-0.1$	-	
			3.0 to 3.6	$V_{C C}-0.1$	-	-	$\mathrm{V}_{C C}-0.1$	-	
		$\mathrm{l}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	1.1 to 1.3	$0.75 \times \mathrm{V}_{\mathrm{CC}}$	-	-	$0.70 \times \mathrm{V}_{\mathrm{CC}}$	-	
		$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	1.4 to 1.6	1.07	-	-	0.99	-	
		$\mathrm{l}_{\mathrm{OH}}=-1.5 \mathrm{~mA}$	1.65 to 1.95	1.24	-	-	1.22	-	
		$\mathrm{l}_{\mathrm{OH}}=-2.1 \mathrm{~mA}$	2.3 to 2.7	1.95	-	-	1.87	-	
		$\mathrm{IOH}=-2.6 \mathrm{~mA}$	3.0 to 3.6	2.61	-	-	2.55	-	
V_{OL}	Low-Level Output Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$							V
		$\mathrm{I}_{\text {OL }}=20 \mu \mathrm{~A}$	0.9	-	0.1	-	-	-	
			1.1 to 1.3	-	-	0.1	-	0.1	
			1.4 to 1.6	-	-	0.1	-	0.1	
			1.65 to 1.95	-	-	0.1	-	0.1	
			2.3 to 2.7	-	-	0.1	-	0.1	
			3.0 to 3.6	-	-	0.1	-	0.1	
		$\mathrm{I}_{\text {OL }}=0.5 \mathrm{~mA}$	1.1 to 1.3	-	-	$0.3 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.3 \times \mathrm{V}_{\mathrm{CC}}$	
		$\mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}$	1.4 to 1.6	-	-	0.31	-	0.37	
		$\mathrm{I}_{\text {OL }}=1.5 \mathrm{~mA}$	1.65 to 1.95	-	-	0.31	-	0.35	
		$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$	2.3 to 2.7	-	-	0.31	-	0.33	
		$\mathrm{I}_{\mathrm{OL}}=2.6 \mathrm{~mA}$	3.0 to 3.6	-	-	0.31	-	0.33	
1 IN	Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 3.6 V	0.9 to 3.6	-	-	± 0.1	-	± 0.5	$\mu \mathrm{A}$
loff	Power Off Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	0	-	-	0.5	-	0.5	$\mu \mathrm{A}$
I_{Cc}	Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	0.9 to 3.6	-	-	0.9	-	0.9	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
tpLH, $^{\text {P }}$ PHL	Propagation Delay, A to Y (Figures 3 and 4)	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	0.9	-	45.0	-	-	-	ns
			1.10 to 1.30	-	11.9	25.9	-	34.3	
			1.40 to 1.60	-	6.2	14.8	-	15.0	
			1.65 to 1.95	-	4.4	12.0	-	12.2	
			2.3 to 2.7	-	3.3	9.4	-	9.9	
			3.0 to 3.6	-	2.7	8.3	-	9.0	
$\mathrm{tPLH} \mathrm{t}_{\text {PHL }}$	Propagation Delay, A to Y (Figures 3 and 4)	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	0.9	-	46.6	-	-	-	ns
			1.10 to 1.30	-	12.5	27.3	-	37.3	
			1.40 to 1.60	-	6.7	15.5	-	16.5	
			1.65 to 1.95	-	4.8	12.6	-	13.6	
			2.3 to 2.7	-	3.5	9.9	-	10.8	
			3.0 to 3.6	-	2.9	8.7	-	9.5	
$\mathrm{tPLH} \mathrm{t}_{\text {PHL }}$	Propagation Delay, A to Y (Figures 3 and 4)	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	0.9	-	51.3	-	-	-	ns
			1.10 to 1.30	-	14.5	31.6	-	46.3	
			1.40 to 1.60	-	8.2	17.8	-	18.2	
			1.65 to 1.95	-	5.9	14.4	-	15.9	
			2.3 to 2.7	-	4.2	11.3	-	12.8	
			3.0 to 3.6	-	3.4	9.2	-	10.7	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Condition	Typical $\left(\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}\right)$	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	2.0	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	4.0	pF
C_{PD}	Power Dissipation Capacitance (Note 5$)$	$\mathrm{f}=10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=0.9$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{CC}	6.0	pF

5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{P D} \bullet \mathrm{~V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}}$. C_{PD} is used to determine the no-load dynamic power consumption: $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

C_{L} includes probe and jig capacitance
R_{T} is $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω) $\mathrm{f}=1 \mathrm{MHz}$

Test	Switch Position
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PLZ }} / \mathrm{t}_{\text {PZL }}$	$2 \times \mathrm{V}_{\mathrm{CC}}$
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\text {PZH }}$	GND

Figure 3. Test Circuit

$\mathbf{V}_{\mathbf{C C}}, \mathbf{V}$	$\mathbf{V}_{\mathbf{m i}}, \mathbf{V}$	$\mathbf{V}_{\mathbf{m o}} \mathbf{V}$	$\mathbf{V}_{\mathbf{Y}}, \mathbf{V}$
0.9	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.1
1.1 to 1.3	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.1
1.4 to 1.6	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.1
1.65 to 1.95	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.15
2.3 to 2.7	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.15
3.0 to 3.6	1.5	1.5	0.3

Figure 4. Switching Waveforms

ORDERING INFORMATION

Device	Package	Marking	Pin 1 Orientation (See below)	Shipping †
NC7NP34K8X	US8	NP34	Q4	$3000 /$ Tape \& Reel
NC7NP34L8X	MicroPak, UQFN8	X7	Q4	$5000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Pin 1 Orientation in Tape and Reel
Direction of Feed

SIDE VIEW

RECOMMENDED

LAND PATTERN

NOTES:
A. PACKAGE CONFORMS TO JEDEC MO-255 VARIATION UAAD.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
(0.15)

| DOCUMENT NUMBER: | 98AON13591G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UQFN8 1.6X1.6, 0.5P | PAGE 1 OF 1 |

RECOMMENDED LAND PATTERN

NOTES:

A. CONFORMS TO JEDEC REGISTRATION MO-187
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1994.
SIDE VIEW

DETAIL A

| DOCUMENT NUMBER: | 98AON13778G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | US8 | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Buffers \& Line Drivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
LXV200-024SW 74AUP2G34FW3-7 HEF4043BP PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 59628982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5$\underline{7}$ TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG LE87100NQC LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC $\underline{\text { LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NLV74VHC125DTR2G NL17SG126DFT2G }}$

