Low-Voltage SPDT Analog Switch or 2:1 Multiplexer/ De-multiplexer Bus Switch

NC7SBU3157, FSAU3157

General Description

The NC7SBU3157 / FSAU3157 is a high-performance, single-pole / double-throw (SPDT) analog switch or 2:1 multiplexer / de-multiplexer bus switch.

The device is fabricated with advanced sub-micron CMOS technology to achieve high-speed enable and disable times and low on resistance. The break-beforemake select circuitry prevents disruption of signals on the B port due to both switches temporarily being enabled during select pin switching. The device is specified to operate over the 1.65 to $5.5 \mathrm{~V}_{\mathrm{CC}}$ operating range. The control input tolerates voltages up to 5.5 V , independent of the V_{CC} operating range.

ON Semiconductor integrated Undershoot Hardened Circuit senses undershoot at the I/Os, and responds by preventing voltage differentials from developing and turning the switch on.

Features

- Analog and Digital Applications
- Space-saving, SC70 6-lead, Surface-mount Package
- Low On Resistance: $<10 \Omega$ on typical at $3.3 \mathrm{~V}_{\mathrm{CC}}$
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Rail-to-rail Signal Handling
- Power-down, High-impedance Control Input
- Over-voltage Tolerance of Control Input to 7.0 V
- Break-before-make Enable Circuitry
- $250 \mathrm{MHz}, 3 \mathrm{~dB}$ Bandwidth
- This Device is $\mathrm{Pb}-$ Free and is RoHS Compliant

FUNCTION TABLE

Input (S)	Function
Logic Level Low	B_{0} Connected to A
Logic Level High	B_{1} Connected to A

PIN DESCRIPTIONS

Pin Names	Description
$\mathrm{A}, \mathrm{B}_{0}, \mathrm{~B}_{1}$	Data Ports
S	Control Input

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

SC-88 (SC-70 6 Lead), 1.25x2 CASE 419AD

CONNECTION DIAGRAM

Pin Assignment SC-70

MARKING DIAGRAM

NOTE:
Orientation of top mark determines pin one location. Read the top mark left to right and pin one is the lower left pin.

Pin One Orientation

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

Figure 1. Logic Symbol

Figure 2. Analog Symbol

ORDERING INFORMATION

Part Number	Top Mark	Operating Temperature Range	Package	Shipping †
NC7SBU3157P6X	U7A	-40 to $85^{\circ} \mathrm{C}$	SC70 (Pb-Free)	3000 units / Tape \& Reel
FSAU3157P6X	U7A	-40 to $85^{\circ} \mathrm{C}$	SC70 (Pb-Free)	3000 units / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min	Max	Units
V_{CC}	Supply Voltage	-0.5	+7.0	V
$\mathrm{~V}_{\mathrm{S}}$	DC Switch Voltage (Note 1)	-0.5	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\text {IN }}$	DC Input Voltage (Note 1)	-0.5	+7.0	V
I_{IK}	DC Input Diode Current at $\mathrm{V}_{\text {IN }}<0 \mathrm{~V}$		-50	mA
$\mathrm{I}_{\mathrm{OUT}}$	DC Output Current		128	mA
$\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\text {GND }}$	DC $\mathrm{V}_{\text {CC }}$ or Ground Current		± 100	mA
$\mathrm{~T}_{\text {STG }}$	Storage Temperature Range	-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias		+150	${ }^{\circ} \mathrm{C}$
T_{L}	Junction Lead Temperature (Soldering, 10 seconds)		+260	${ }^{\circ} \mathrm{C}$
P_{D}	Power Dissipation at $+85^{\circ} \mathrm{C}$		180	mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Units
V_{CC}	Supply Voltage Operating		1.65	5.50	V
$\mathrm{V}_{\text {IN }}$	Control Input Voltage (Note 2)		0	V_{CC}	V
$\mathrm{V}_{\text {IN }}$	Switch Input Voltage (Note 2)		0	V_{CC}	V
$\mathrm{V}_{\text {OUT }}$	Output Voltage (Note 2)		0	V_{CC}	V
$\mathrm{T}_{\text {A }}$	Operating Temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	Control Input $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}-3.6 \mathrm{~V}$	0	10	ns / V
		Control Input $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V}$	0	5	ns/V
$\theta_{\text {JA }}$	Thermal Resistance			350	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
2. Control input must be held HIGH or LOW; it must not float.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min.	Typ.	Max.	Min.	Max.	
VIH	High Level Input Voltage		1.65 to 1.95	$0.75 \mathrm{~V}_{\text {cc }}$			$0.75 \mathrm{~V}_{\mathrm{cc}}$		V
			2.3 to 5.5	$0.7 \mathrm{~V}_{\text {cc }}$			$0.7 \mathrm{~V}_{\mathrm{cc}}$		
VIL	Low Level Input Voltage		1.65 to 1.95			$0.25 \mathrm{~V}_{\mathrm{CC}}$		$0.25 \mathrm{~V}_{\mathrm{cc}}$	V
			2.3 to 5.5			$0.3 \mathrm{~V}_{\mathrm{cc}}$		$0.3 \mathrm{~V}_{\text {cc }}$	
IIN	Input Leakage Current	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$	0 to 5.5		± 0.05	± 0.1		± 1	$\mu \mathrm{A}$
IofF	Off State Leakage Current	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{cc}}$	1.65 to 5.5		± 0.05	± 0.1		± 1	$\mu \mathrm{A}$
Ron	Switch On Resistance (Note 3)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{0}=30 \mathrm{~mA}$	4.5		3.0	15.0		15.0	Ω
		$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA}$			5.0	15.0		15.0	
		$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA}$			7.0	15.0		15.0	
		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$	3.0		4.0	20.0		20.0	
		$\mathrm{V}_{\mathbb{I}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA}$			10.0	20.0		20.0	
			2.3		5.0	30.0		30.0	
		$\mathrm{V}_{1 \times}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=-8 \mathrm{~mA}$			13.0	30.0		30.0	
		$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA}$	1.65		6.5	50.0		50.0	
		$\mathrm{V}_{\mathbb{1 N}}=1.65 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA}$			17.0	50.0		50.0	
Icc	Quiescent Supply Current; All Channels On or Off	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or $\mathrm{GND}^{\text {l }}$ IUTT $=0$	5.5			1		10	$\mu \mathrm{A}$
	Analog Signal Range		Vcc	0		Vcc	0	Vcc	V
Rrange	On Resistance Over Signal Range (Notes 3, 7)	$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	4.5					25.0	Ω
		$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\text {CC }}$	3.0					50.0	
		$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	2.3					100	
		$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	1.65					300	
$\Delta \mathrm{R}_{\text {ON }}$	On Resistance Match Between- Channels (Notes 3, 4, 5)	$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=3.15$	4.5		0.15				Ω
		$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}} 2.1$	3.0		0.2				
		$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=1.6$	2.3		0.5				
		$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=1.15$	1.65		0.5				
VİU	Voltage Under- shoot	$0.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{N}} \leq-50, \overline{O E} 5.5 \mathrm{v}$	5.5					-2	V
Rflat	On Resistance Flatness (Notes 3, 4, 6)	$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	5.0		6.0				Ω
		$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\text {CC }}$	3.3		12.0				
		$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	2.5		28.0				
		$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	1.8		125				

3. Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B Ports).
4. Parameter is characterized, but not tested in production.
5. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}}$ minimum measured at identical V_{CC}, temperature, and voltage levels.
6. Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.
7. Guaranteed by design.

AC ELECTRICAL CHARACTERISTICS

8. This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the on resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
9. Guaranteed by design.
10. Off Isolation $=20 \log _{10}\left[V_{A} / V_{B n}\right]$.

CAPACITANCE (Note 11)

Symbol	Parameter	Conditions	Typ.	Max.	Units
CIN	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	2.3		pF
CIO-B	B Port Off Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	6.5		pF
CIOA-ON	A Port Capacitance When Switch Is Enabled	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	18.5		pig

11. $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized, but not tested in production.

UNDERSHOOT CHARACTERISTIC (Note 12)

Symbol	Parameter	Min.	Typ.	Units	Figure
Voutu	Output Voltage During Undershoot	2.5	$\mathrm{~V}_{\mathrm{OH}}-0.3$	V	Figure 3

12. This test is intended to characterize the device's protective capabilities by maintaining output signal integrity during an input transient voltage undershoot event.

NC7SBU3157, FSAU3157

Figure 3. Output Voltage During Undershoot

DEVICE TEST CONDITIONS

Parameter	Value	Units
V_{IN}	see Figure 4	V
$\mathrm{R}_{1}=\mathrm{R}_{2}$	100	$\mathrm{~K} \Omega$
$\mathrm{~V}_{\mathrm{TRI}}$	7.0	V
$\mathrm{~V}_{\mathrm{CC}}$	5.5	V

AC Loading and Waveforms

Notes:
Input driven by 50Ω source terminated in 50Ω.
C_{L} includes load and stray capacitance, $C_{L}=50 \mathrm{pF}$
Input $\mathrm{PRR}=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$
Figure 5. AC Test Circuit

Figure 6. AC Waveforms

AC Loading and Waveforms (continued)

Figure 7. Break-Before-Make Interval Timing

Figure 8. Charge Injection Test

Figure 9. Off Isolation

Figure 11. Channel Off Capacitance

Figure 10. Crosstalk

Figure 12. Channel On Capacitance

Figure 13. Bandwidth

TOP VIEW

SYMBOL	MIN	NOM	MAX	
A	0.80		1.10	
A1	0.00		0.10	
A2	0.80		1.00	
b	0.15		0.30	
c	0.10		0.18	
D	1.80	2.00	2.20	
E	1.80	2.10	2.40	
E1	1.15	1.25	1.35	
e	0.65 BSC			
L	0.26	0.36	0.46	
L1	0.42 REF			
L2	0.15 BSC			
θ	0°		8°	
$\theta 1$	4°		10°	

SIDE VIEW

END VIEW

Notes:
(1) All dimensions are in millimeters. Angles in degrees.
(2) Complies with JEDEC MO-203.

| DOCUMENT NUMBER: | 98AON34266E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88 (SC-70 6 LEAD), 1.25X2 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX

