FAIRCHILD

SEMICONDUCTOR

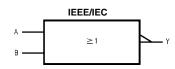
NC7ST02 TinyLogic® HST 2-Input NOR Gate

General Description

The NC7ST02 is a single 2-Input high performance CMOS NOR Gate, with TTL-compatible inputs. Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation. ESD protection diodes inherently guard both inputs and output with respect to the $V_{\mbox{\scriptsize CC}}$ and $\mbox{\scriptsize GND}$ rails. High gain circuitry offers high noise immunity and reduced sensitivity to input edge rate. The TTL-compatible inputs facilitate TTL to NMOS/CMOS interfacing. Device performance is similar to MM74HCT but with 1/2 the output current drive of HC/HCT.

February 1997 Revised August 2004

5k Units on Tape and Reel

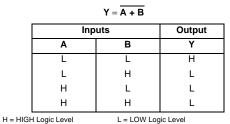

NC7ST02 TinyLogic® HST 2-Input NOR Gate

Ordering (Code:			
Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7ST02M5X	MA05B	8S02	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel
NC7ST02P5X	MAA05A	T02	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel

D9

Logic Symbol

NC7ST02L6X



MAC06A

Pin Descriptions

Pin Names	Description
А, В	Inputs
Y	Output
NC	No Connect

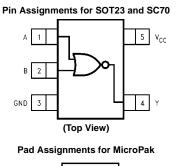
Function Table

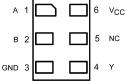
Connection Diagrams

■ Space saving SOT23 or SC70 5-lead package

■ High Speed; t_{PD} < 7 ns typ, V_{CC} = 5V, C_L = 15 pF

 \blacksquare Low Quiescent Power; I_{CC} < 1 μA typ, V_{CC} = 5.5V


■ Balanced Output Drive; 2 mA I_{OL}, -2 mA I_{OH}


■ Ultra small MicroPak[™] leadless package

Features

6-Lead MicroPak, 1.0mm Wide

TTL-compatible inputs

(Top Thru View)

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

© 2004 Fairchild Semiconductor Corporation DS012186

Absolute Maximum Ratings(Note 1)

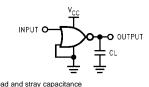
Supply Voltage (V _{CC})	-0.5V to +7.0V	C
DC Input Diode Current (I _{IK})		Su
$V_{IN} < -0.5V$	–20 mA	In
$V_{IN} \ge V_{CC} + 0.5V$	+20 mA	Ou
DC Input Voltage (VIN)	–0.5V to V _{CC} +0.5V	Op
DC Output Diode Current (I _{OK})		In
V _{OUT} < -0.5V	–20 mA	
$V_{OUT} > V_{CC} + 0.5V$	+20 mA	Th
Output Voltage (V _{OUT})	–0.5V to V _{CC} +0.5V	
DC Output Source or Sink		
Current (I _{OUT})	±12.5 mA	
DC V _{CC} or Ground Current per		
Supply Pin (I _{CC} or I _{GND})	±25 mA	
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	
Junction Temperature (T _J)	150°C	Not
Lead Temperature (T _L);		age with
(Soldering, 10 seconds)	260°C	pow doe:
Power Dissipation (P _D) @+85°C		tions
SOT23-5	200 mW	Note
SC70-5	150 mW	

Recommended Operating Conditions (Note 2)

Supply Voltage 4.5V to 5.5V nput Voltage (V_I) 0V to V_{CC} 0V to V_{CC} Dutput Voltage (V_O) $-40^\circ C$ to $+85^\circ C$ Dperating Temperature (T_A) nput Rise and Fall Time (t_r,t_f) $V_{CC} = 5.0V$ 0 to 500 ns hermal Resistance (θ_{JA}) 300°C/W SOT23-5 SC70-5 425°C/W

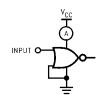
Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of circuits outside the databook specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.


DC Electrical Characteristics

Symbol	Parameter	v _{cc}		$T_A = +25^{\circ}C$		$T_A = -40^{\circ}$	C to +85°C	Units	Conditions
Gymbol	ranameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions
VIH	HIGH Level Input Voltage	4.5–5.5	2.0			2.0		V	
VIL	LOW Level Input Voltage	4.5–5.5			0.8		0.8	V	
V _{OH}	HIGH Level Output Voltage	4.5	4.4	4.5		4.4			I _{OH} = -20 μA
		4.5	4.18	4.35		4.13		V	$V_{IN} = V_{IL}$
									$I_{OH} = -2 \text{ mA}$
V _{OL}	LOW Level Output Voltage	4.5		0	0.1		0.1		$I_{OL} = 20 \ \mu A$
		4.5		0.10	0.26		0.33	V	$V_{IN} = V_{IH}$
									$I_{OL} = 2 \text{ mA}$
I _{IN}	Input Leakage Current	5.5			±0.1		±1.0	μA	$0 \le V_{IN} \le 5.5V$
I _{CC}	Quiescent Supply Current	5.5			1.0		10.0	μA	$V_{IN} = V_{CC}$ or GND
I _{CCT}	I _{CC} per Input	5.5			2.0		2.9	mA	One Input $V_{IN} = 0.5V$ or 2.4V,
									Other Input V _{CC} or GND

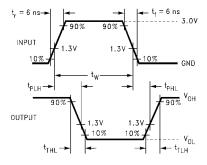
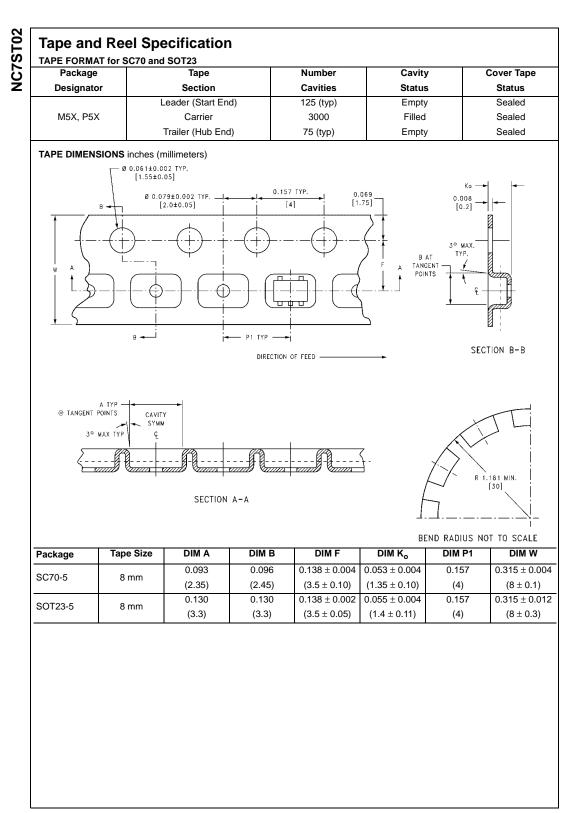
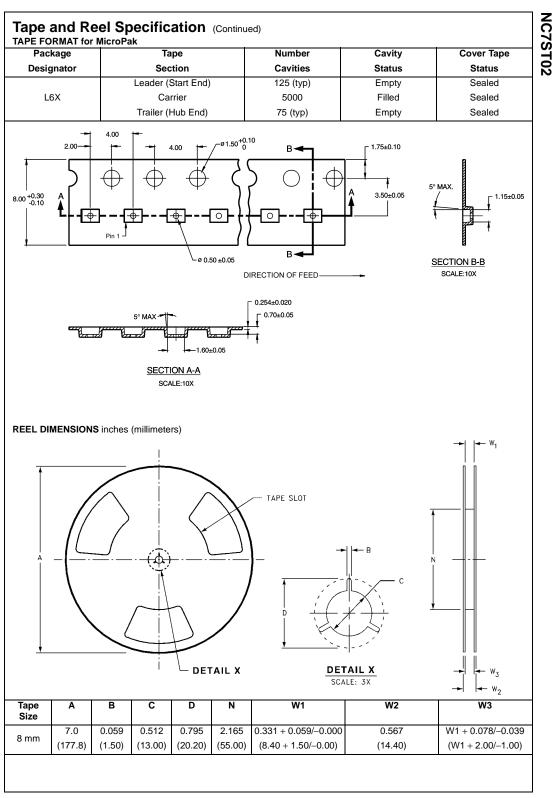
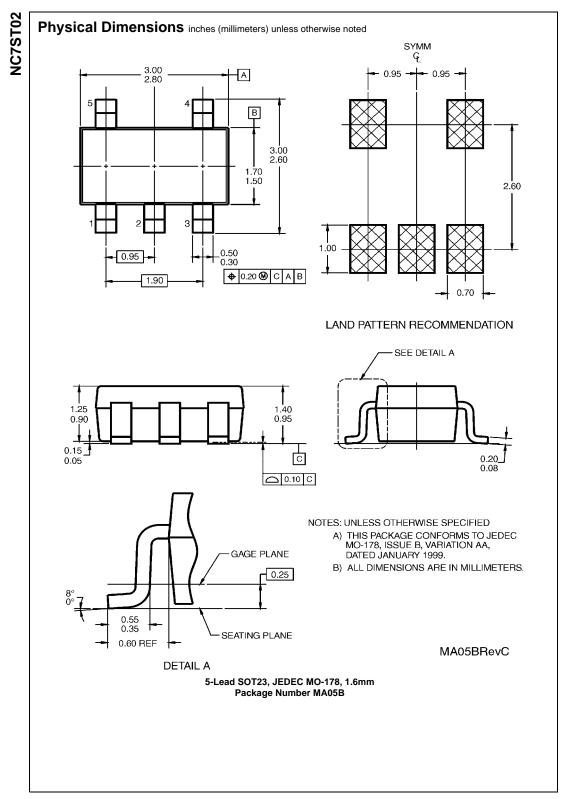
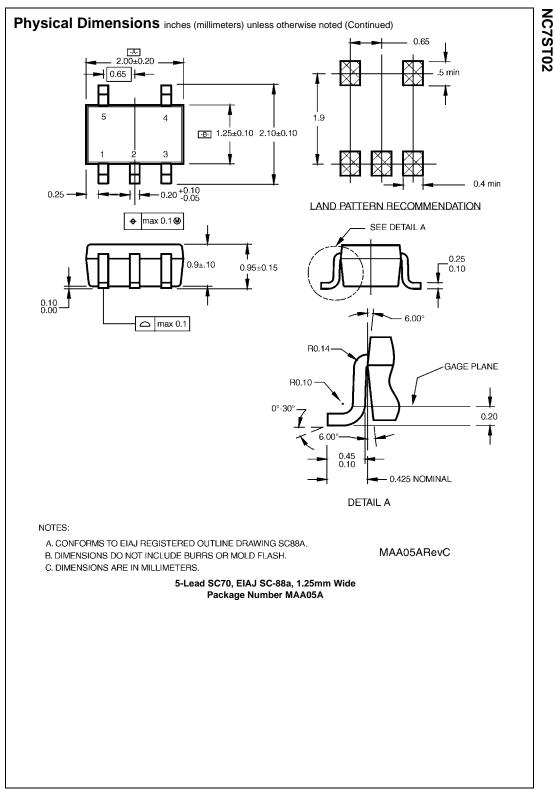
Symbol	Parameter	V _{cc} (V)	T _A = +25°C			$\textbf{T}_{\textbf{A}}=-40^{\circ}\textbf{C}$ to $+85^{\circ}\textbf{C}$		Units	Conditions	Figure
			Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PLH} ,	Propagation Delay	5.0		3.5	12			ns	C _L = 15 pF	
t _{PHL}		5.0		6.3	17			ns		
		4.5		6.1	16		20	ns	Р С _L = 50 рF	Figures
		4.5		11.7	27		31			1, 3
		5.5		4.2	14		18			
		5.5		11.4	26		30			
t _{TLH} ,	Output Transition Time	5.0		4	10			ns	$C_L = 15 \text{ pF}$	Figures
t _{THL}		4.5		11	25		31	-	$C_L = 50 \text{ pF}$	
		5.5		10	21		26	ns		1,0
CIN	Input Capacitance	Open		2	10			pF		
CPD	Power Dissipation Capacitance	5.0		6				pF	(Note 3)	Figure 2

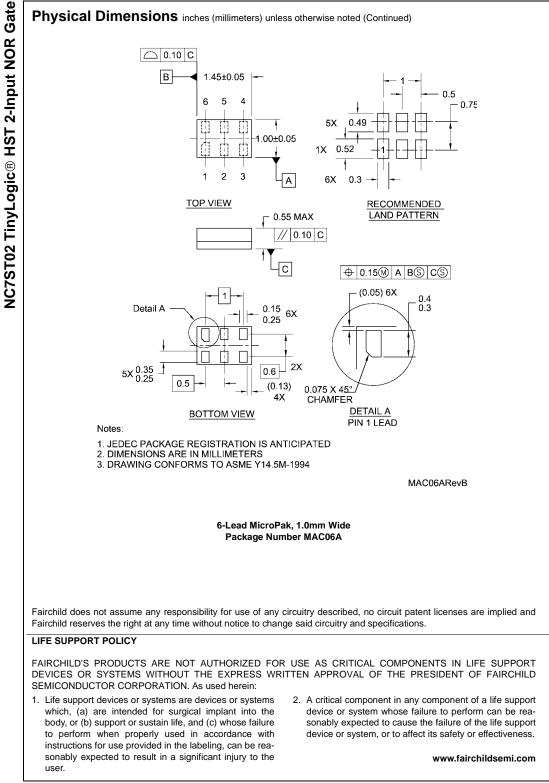

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD}) (V_{CC}) ($f_{|N}$) + (I_{CCstatic}).

AC Loading and Waveforms

 C_L includes load and stray capacitance Input PRR = 1.0 MHz, $t_w = 500$ ns

Input = AC Waveform; PRR = Variable; Duty Cycle = 50% FIGURE 2. I_{CCD} Test Circuit


FIGURE 3. AC Waveforms

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

74HC85N NLU1G32AMUTCG NLV7SZ58DFT2G CD4068BE NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC32ADTR2G MC74HCT20ADTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV74HC02ADR2G 74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 NLV74HC08ADTR2G NLV74HC14ADR2G NLV74HC20ADR2G NLX2G86MUTCG 5962-8973601DA 74LVC2G02HD4-7 NLU1G00AMUTCG 74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G00HK3-7 74LVC2G86HK3-7 NLX1G99DMUTWG NLVVHC1G00DFT2G NLVHC1G08DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ86USG NLV27WZ00USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7 NLV74HC02ADTR2G NLX1G332CMUTCG NL17SG86P5T5G NL17SZ05P5T5G