TinyLogic HST Inverter

NC7ST04

Description

The NC7ST04 is a single high performance CMOS Inverter, with TTL-compatible inputs. Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation. ESD protection diodes inherently guard both input and output with respect to the $V_{\rm CC}$ and GND rails. High gain circuitry offers high noise immunity and reduced sensitivity to input edge rate. The TTL-compatible input facilitates TTL to NMOS/CMOS interfacing. Device performance is similar to MM74HCT but with $^{1}/_{2}$ the output current drive of HC/HCT.

Features

- Space Saving SC-74A and SC-88A 5-Lead Packages
- High Speed; t_{PD} < 7 ns typ, V_{CC} = 5 V, C_L = 15 pF
- Low Quiescent Power; $I_{CC} < 1 \mu A \text{ typ}$, $V_{CC} = 5.5 \text{ V}$
- $\bullet\,$ Balanced Output Drive; 2 mA $I_{OL},$ –2 mA I_{OH}
- TTL-compatible Inputs
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

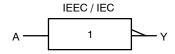


Figure 1. Logic Symbol

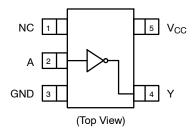
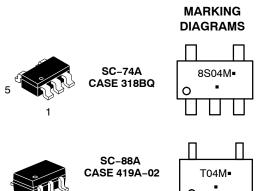



Figure 2. Connection Diagram

ON Semiconductor®

www.onsemi.com

8S04, T04 = Specific Device Code M = Date Code*

*Date Code orientation and/or position may vary depending upon manufacturing location.

PIN ASSIGNMENT

Pin Name	Description
Α	Input
Y	Output
NC	No Connect

FUNCTION TABLE $(Y = \overline{A})$

Input	Output
Α	Υ
L	Н
Н	L

H = HIGH Logic Level L = LOW Logic Level

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 3 of this data sheet.

NC7ST04

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	•	Min	Max	Unit
V _{CC}	Supply Voltage		-0.5	6.5	V
I _{IK}	DC Input Diode Current	V _{IN} < 0 V	-	-20	mA
		V _{IN} > V _{CC}	-	+20	
V _{IN}	DC Input Voltage		-0.5	V _{CC} + 0.5 V	V
lok	DC Output Diode Current	V _{OUT} < 0 V	-	-20	mA
		V _{OUT} > V _{CC}	-	+20	
V _{OUT}	DC Output Voltage		-0.5	V _{CC} + 0.5 V	V
I _{OUT}	DC Output Source or Sink Current		-	±12.5	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per Supply Pin		-	±25	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
T_J	Junction Temperature		-	150	°C
	DC V _{CC} or Ground Current per (Soldering, 10 Seconds)		-	+260	°C
P_{D}	Power Dissipation in Still Air	SC-74A	-	390	mW
		SC-88A	-	332	7

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

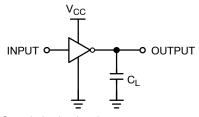
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply Voltage		4.5	5.5	V
V _{IN}	Input Voltage		0	V _{CC}	V
V _{OUT}	Output Voltage		0	V _{CC}	V
T _A	Operating Temperature		-40	+85	°C
t _r , t _f	Input Rise and Fall Times	V _{CC} = 5.0 V	0	10	ns/V
θ_{JA}	Thermal Resistance	SC-74A	-	320	°C/W
		SC-88A	-	377	7

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

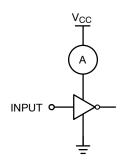
DC ELECTICAL CHARACTERISTICS

				T,	_A = +25°	С	T _A = -40	to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Min	Тур	Max	Min	Max	Unit
V _{IH}	HIGH Level Input Voltage	4.5 – 5.5		2.0	-	_	2.0	-	V
V _{IL}	LOW Level Input Voltage	4.5 – 5.5		-	-	0.8	_	0.8	V
V _{OH}	HIGH Level Output Voltage	4.5	$I_{OH} = -20 \mu\text{A},$	4.4	4.5	_	4.4	_	V
	voltage	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $I_{OH} = -2 \text{ mA}$		4.18	4.35	-	4.13	-	
V _{OL}	LOW Level Output Voltage	4.5	I _{OL} = 20 μA,	-	0	0.1	_	0.1	V
	voltage	4.5	$V_{IN} = V_{IH}$ or V_{IL} , $I_{OL} = 2$ mA	_	0.10	0.26	_	0.33	
I _{IN}	Input Leakage Current	5.5	$0 \le V_{IN} \le 5.5 \text{ V}$	-	-	±0.1	_	±1.0	μΑ
I _{CC}	Quiescent Supply Current	5.5	V _{IN} = V _{CC} or GND	-	-	1.0	-	10.0	μΑ
I _{CCT}	I _{CC} per Input	5.5	Input V _{IN} = 0.5 V or 2.4 V	_	_	2.0	_	2.9	mA


^{1.} Unused inputs must be held HIGH or LOW. They may not float.

AC ELECTRICAL CHARACTERISTICS

					T _A = 25°C		T _A = -40) to 85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Min	Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay	5.0	C _L = 15 pF	-	3.5	12	-	-	ns
	(Figure 3, 5)			-	6.0	17	-	-	
		4.5	C _L = 50 pF	-	6.2	16	-	20	
				-	11.4	27	-	31	
		5.5		-	4.3	14	-	18	
				-	11.1	26	-	30	
t _{TLH} , t _{THL}	Output Transition Time	5.0	C _L = 15 pF	-	4	10	-	-	ns
	(Figure 3, 5)	4.5	C _L = 50 pF	-	11	25	-	31	
		5.5		-	10	21	-	26	
C _{IN}	Input Capacitance	Open		-	2	10	-	-	pF
C _{PD}	Power Dissipation Capacitance (Figure 4)	5.00	(Note 2)	-	6	-	_	-	pF


C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output lading and operating at 50% duty cycle. C_{PD} is related to I_{CCD} dynamic operating current by the expression:
 I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CCstatic}).

AC Loading and Waveforms

 C_L includes load and stray capacitance; inputs PRR = 1.0 MHz, t_W = 500 ns.

Figure 3. AC Test Circuit

Input = AC Waveform; PRR = Variable; Duty Cycle = 50%.

Figure 4. I_{CCD} Test Circuit

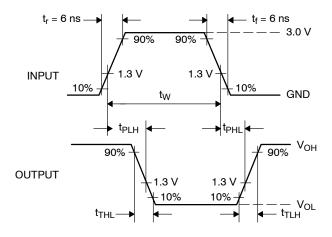
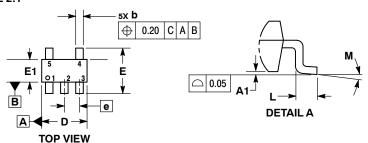
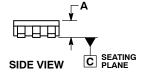
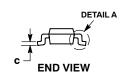
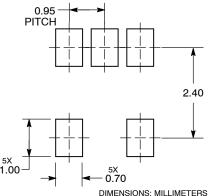


Figure 5. AC Waveforms


DEVICE ORDERING INFORMATION


Device	Top Mark	Packages	Shipping [†]
NC7ST04M5X	8S04	5-Lead SC-74A, 1.6 mm	3000 / Tape & Reel
NC7ST04P5X	T04	5-Lead SC-70, EIAJ SC-88a, 1.25mm Wide	3000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


DATE 18 JAN 2018

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

- IES:
 DIMENSIONING AND TOLERANCING PER ASME
 Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS. MINIMUM LEAD THICKNESS IS THE
 MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.90	1.10		
A1	0.01	0.10		
b	0.25	0.50		
С	0.10	0.26		
D	2.85	3.15		
E	2.50	3.00		
E1	1.35	1.65		
е	0.95 BSC			
L	0.20	0.60		
М	0°	10°		

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

Μ = Date Code = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON66279G	Electronic versions are uncontrolled except when accessed directly from the Document Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-74A		PAGE 1 OF 1

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SC-88A (SC-70-5/SOT-353) CASE 419A-02 **ISSUE L**

DATE 17 JAN 2013

- TIES:
 DIMENSIONING AND TOLERANCING
 PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 419A-01 OBSOLETE. NEW STANDARD 3.
- 419A-02.
 DIMENSIONS A AND B DO NOT INCLUDE
- MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
С	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026	BSC	0.65 BSC	
Н		0.004		0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
N	0.008 REF		0.20	REF
S	0.079	0.087	2.00	2.20

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

-B-S D 5 PL 0.2 (0.008) M B M **SOLDER FOOTPRINT**

+++			
0.40			0.65 0.025
	<u>1.9</u> 0.0748	SCALE 20:1	$\left(\frac{\text{mm}}{\text{inches}}\right)$
OT # F 4	07450	07.45.0	

0.50 0.0197

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. ANODE	PIN 1. ANODE 1	PIN 1. SOURCE 1	PIN 1. CATHODE
2. EMITTER	2. EMITTER	2. N/C	2. DRAIN 1/2	2. COMMON ANODE
3. BASE	3. BASE	3. ANODE 2	3. SOURCE 1	3. CATHODE 2
4. COLLECTOR	4. COLLECTOR	4. CATHODE 2	4. GATE 1	4. CATHODE 3
4. COLLECTOR	4. COLLECTOR	4. CATHODE 2	4. GATE 1	4. CATHODE 3
5. COLLECTOR	5. CATHODE	5. CATHODE 1	5. GATE 2	5. CATHODE 4

J. GOLLLOTON	3. CATTODE	J. CATHODE I	J. GAIL 2	J. CATTODE 4
STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 5. COLLECTOR 2/BASE 1	STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR	STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER	STYLE 9: PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE	Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:	98ASB42984B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-88A (SC-70-5/SOT-353)		PAGE 1 OF 1	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Inverters category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

E5-652Z NL17SGU04P5T5G NLX2G04BMX1TCG CD4009UBE TC4584BFN 022413E NL17SG14AMUTCG NLU2G04AMUTCG NLU2G04AMUTCG NLU2G04CMX1TCG NLV17SZ06DFT2G NCV1729SN35T1G TC74VHC04FK(EL,K) NLV74HC04ADTR2G NLU1G04AMUTCG NLX2G04CMUTCG NLU1GU04CMUTCG NLU1GT14AMUTCG NLU1G04CMUTCG NL17SZU04P5T5G NLV17SG14DFT2G 74LVC06ADTR2G 74LVC04ADR2G NLV37WZ04USG NLX3G14FMUTCG NL17SZ04P5T5G NLV17SG14DFT2G 74ACT14SC BU4069UBF-E2 EMPP008Z NC7WZ14P6X NLV14106BDTR2G NLV74AC14DTR2G SN74HCT04DE4 ODE-3-120023-1F12 74VHCT04AM SV004IE5-1C TC74HC04APF TC7SH04F,LJ(CT TC7W14FK,LF 74VHC14MTCX 74LCX14MTC SN74LVC1GU04DBVR NL27WZ14DFT2G NLU1G14BMX1TCG NLU2G04AMX1TCG NLU2G14AMX1TCG NLU3G14AMX1TCG NLVVHC1G04DFT2G NLX2G04CMX1TCG