TinyLogic HST 2-Input OR Gate

NC7ST32

Description

The NC7ST32 is a single 2–Input high performance CMOS OR Gate, with TTL–compatible inputs. Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation. ESD protection diodes inherently guard both inputs and output with respect to the V_{CC} and GND rails. High gain circuitry offers high noise immunity and reduced sensitivity to input edge rate. The TTL–compatible inputs facilitate TTL to NMOS / CMOS interfacing. Device performance is similar to MM74HCT but with $1/_2$ the output current drive of HC / HCT.

Features

- Space Saving SC-74A and SC-88A 5-Lead Package
- Ultra Small MicroPakTM Leadless Package
- High Speed: $t_{PD} < 7$ ns Typ, $V_{CC} = 5$ V, $C_L = 15$ pF
- Low Quiescent Power: $I_{CC} < 1 \mu A$ Typ, $V_{CC} = 5.5 V$
- Balanced Output Drive: 2 mA I_{OL}, -2 mA I_{OH}
- TTL-compatible Inputs
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

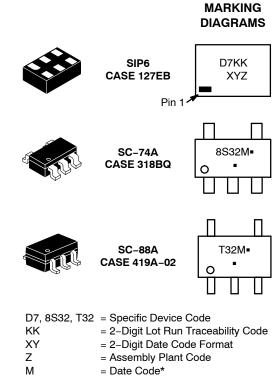
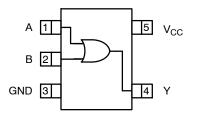


Figure 1. Logic Symbol

ON Semiconductor®

www.onsemi.com



*Date Code orientation and/or position may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 4 of this data sheet.

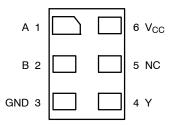

Pin Configurations

Figure 2. SC-88A and SC-74A (Top View)

PIN DESCRIPTIONS

Pin Name	Description
A, B	Inputs
Y	Output
NC	No Connect

Figure 3. MicroPak (Top Through View)

FUNCTION TABLE (Y = A + B)

Inp	Output	
А	В	Y
L	L	L
L	Н	Н
Н	L	Н
Н	Н	Н

H = HIGH Logic Level L = LOW Logic Level

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter Supply Voltage		Min	Мах	Unit
V _{CC}			-0.5	6.5	V
I _{IK}	DC Input Diode Current V _{IN} < 0 V		-	-20	mA
		$V_{IN} > V_{CC}$	-	+20	
V _{IN}	DC Input Voltage		-0.5	V _{CC} + 0.5	V
I _{OK}	DC Output Diode Current	V _{OUT} < 0 V	-	-20	mA
		$V_{OUT} > V_{CC}$	-	+20	
V _{OUT}	Output Voltage		-0.5	V _{CC} + 0.5	V
I _{OUT}	DC Output Source or Sink Current		-	±12.5	mA
$I_{CC} \text{ or } I_{GND}$	DC V_{CC} or Ground Current per Supply Pin		-	±25	mA
T _{STG}	Storage Temperature		-65	+150	°C
TJ	Junction Temperature		-	+150	°C
ΤL	Lead Temperature (Soldering, 10 Seconds)		-	+260	°C
PD	Power Dissipation in Still Air	SC-74A	-	390	mW
		SC-88A	-	332	1
		MicroPak-6	-	812	1

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

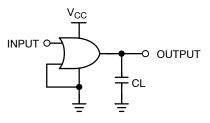
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{CC}	Supply Voltage		4.5	5.5	V
V _{IN}	Input Voltage		0	V _{CC}	V
V _{OUT}	Output Voltage		0	V _{CC}	V
T _A	Operating Temperature		-40	+85	°C
t _r , t _f	Input Rise and Fall Time	V _{CC} = 5.0 V	0	10	ns/V
θ_{JA}	Thermal Resistance	SC-74A	-	320	°C/W
		SC-88A	-	377	
		MicroPak-6	-	154	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

1. Unused inputs must be held HIGH or LOW. They may not float.

DC ELECTICAL CHARACTERISTICS


				T _A = +25°C		$T_A = -40 \text{ to } +85^\circ \text{C}$			
Symbol	Parameter	V _{CC} (V)	Conditions	Min	Тур	Max	Min	Max	Unit
V _{IH}	HIGH Level Input Voltage	4.5 – 5.5		2.0	-	-	2.0	-	V
V _{IL}	LOW Level Input Voltage	4.5 – 5.5		-	-	0.8	-	0.8	V
V _{OH}	HIGH Level Output Voltage	4.5	I_{OH} = –20 $\mu A_{,}~V_{IN}$ = V_{IH} or V_{IL}	4.4	4.5	-	4.4	-	V
		4.5	I _{OH} = -2 mA	4.18	4.35	-	4.13	-	
V _{OL}	LOW Level Output Voltage	4.5	I_{OL} = 20 $\mu A,V_{IN}$ = V_{IH} or V_{IL}	-	0	0.1	-	0.1	V
		4.5	I _{OL} = 2 mA	-	0.10	0.26	-	0.33	
I _{IN}	Input Leakage Current	5.5	$0~V \leq V_{IN} \leq 5.5~V$	-	-	±0.1	-	±1.0	μΑ
I _{CC}	Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND	-	-	1.0	-	10.0	μA
I _{CCT}	I _{CC} per Input	5.5	One Input V _{IN} = 0.5 V or 2.4 V, Other Input V _{CC} or GND	-	-	2.0	-	2.9	mA

AC ELECTRICAL CHARACTERISTICS

					T _A = +25°C		T _A = -40	to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Min	Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay (Figure 4, 6)	5.0	C _L = 15 pF	-	4.3	12	-	-	ns
				-	6.1	17	-	-	
		4.5	C _L = 50 pF	-	6.5	16	-	20	
				-	12	27	-	31	
		5.5		-	5.4	14	-	18	
				-	10.7	26	-	30	
t _{TLH} , t _{THL}	Output Transition Time	5.0	C _L = 15 pF	-	4	10	-	-	ns
	(Figure 4, 6)	4.5	C _L = 50 pF	-	11	25	-	31	
		5.5		-	10	21	-	26	
C _{IN}	Input Capacitance	Open		-	2	10	-	-	pF
C _{PD}	Power Dissipation Capacitance (Figure 5)	5.0	(Note 2)	-	6	-	-	-	pF

2. C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current. Current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 5) C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC}static).

AC Loading and Waveforms

 C_L includes load and stray capacitance Input PRR = 1.0 MHz; t_W = 500 ns

Figure 4. AC Test Circuit

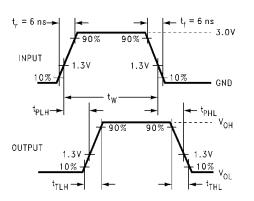
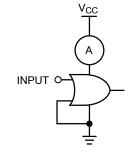
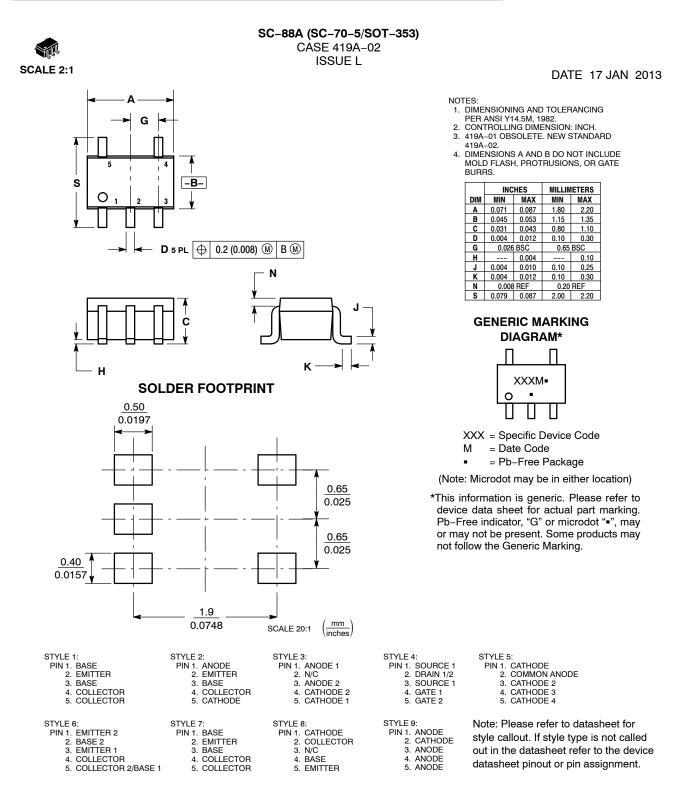



Figure 6. AC Waveforms

Input = AC Waveform; PRR = Variable; Duty Cycle = 50%.

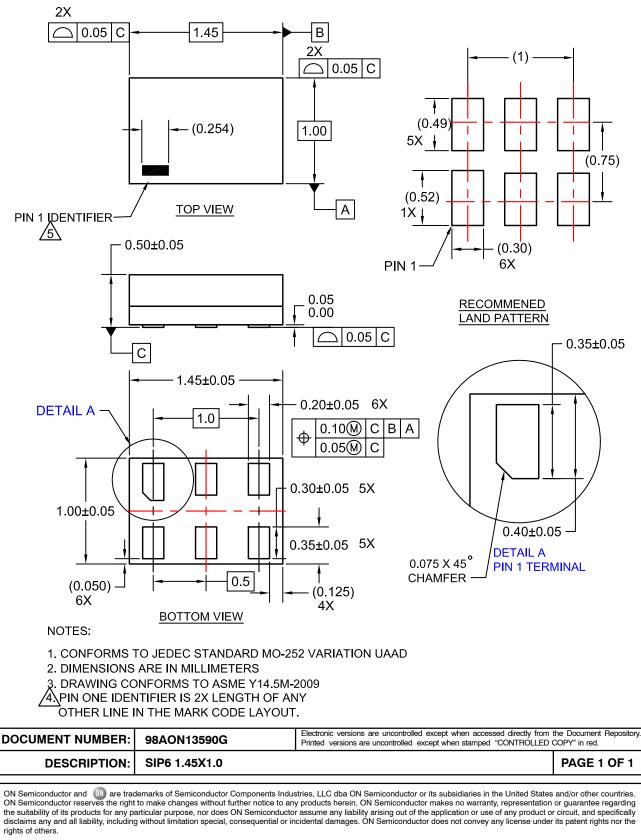
Figure 5. I_{CCD} Test Circuit


ORDERING INFORMATION

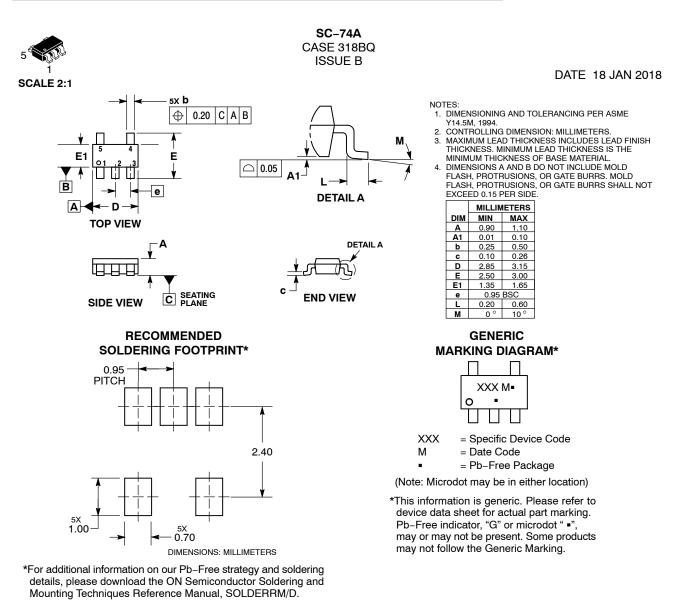
Part Number	Top Mark	Package	Shipping [†]
NC7ST32M5X	8S32	SC-74A	3000 / Tape & Reel
NC7ST32P5X	T32	SC-88A	3000 / Tape & Reel
NC7ST32L6X	D7	SIP6, MicroPak	5000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MicroPak is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.


DOCUMENT NUMBER:	98ASB42984B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SC-88A (SC-70-5/SOT-35	353) PAGE 1 OF 1				

ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.



SIP6 1.45X1.0 CASE 127EB ISSUE O

DATE 31 AUG 2016

DOCUMENT NUMBER:	98AON66279G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SC-74A		PAGE 1 OF 1			
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconductor	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or icidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically			

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

74HC85N NLU1G32AMUTCG CD4068BE NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC32ADTR2G MC74HCT20ADTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV74HC02ADR2G 74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 NLV74HC08ADTR2G NLV74HC14ADR2G NLV74HC20ADR2G NLX2G86MUTCG 5962-8973601DA 74LVC2G02HD4-7 NLU1G00AMUTCG 74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G00HK3-7 74LVC2G86HK3-7 NLX1G99DMUTWG NLVVHC1G00DFT2G NLVHC1G08DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ86USG NLV27WZ00USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7 NLV74HC02ADTR2G NLX1G332CMUTCG NL17SG86P5T5G NL17SZ05P5T5G NLV74VHC00DTR2G