ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
TinyLogic ULP-A 2-Input NAND Gate

NC7SV00

The NC7SV00 is a single 2-Input NAND Gate in tiny footprint packages. The device is designed to operate for $\mathrm{V}_{\mathrm{CC}}=0.9 \mathrm{~V}$ to 3.6 V .

Features

- Designed for 0.9 V to $3.6 \mathrm{~V}_{\mathrm{CC}}$ Operation
- $1.5 \mathrm{~ns}_{\mathrm{t}_{\mathrm{PD}}}$ at 3.3 V (Typ)
- Inputs/Outputs Over-Voltage Tolerant up to 3.6 V
- IOFF Supports Partial Power Down Protection
- Source/Sink 24 mA at 3.3 V
- Available in SC-88A and MicroPak ${ }^{\mathrm{TM}}$ Packages
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Figure 1. Pinout Diagrams (Top Views)

Figure 2. Logic Symbol

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 6 of this data sheet.

PIN ASSIGNMENT

Pin	SC-88A	MicroPak
1	A	A
2	B	B
3	GND	GND
4	Y	Y
5	$\mathrm{~V}_{\mathrm{CC}}$	N.C.
6	-	V_{CC}

[^1]FUNCTION TABLE

Input		Output
A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

MAXIMUM RATINGS

Symbol	Characteristics	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to +4.3	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage	-0.5 to +4.3	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$	$\begin{gathered} -0.5 \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \\ -0.5 \text { to }+4.3 \\ -0.5 \text { to }+4.3 \end{gathered}$	V
I_{K}	DC Input Diode Current $\quad \mathrm{V}_{\text {IN }}<\mathrm{GND}$	-50	mA
lok	DC Output Diode Current $\quad \mathrm{V}_{\text {OUT }}<\mathrm{GND}$	-50	mA
Iout	DC Output Source/Sink Current	± 50	mA
$\mathrm{I}_{\text {CC }}$ or $\mathrm{I}_{\text {GND }}$	DC Supply Current per Supply Pin or Ground Pin	± 50	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	+150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Note 2) $\begin{array}{r}\text { SC-88A } \\ \text { MicroPak }\end{array}$	$\begin{aligned} & 377 \\ & 154 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$P_{\text {D }}$	Power Dissipation in Still Air $\begin{array}{r}\text { SC-88A } \\ \text { MicroPak }\end{array}$	$\begin{aligned} & 332 \\ & 812 \end{aligned}$	mW
MSL	Moisture Sensitivity	Level 1	-
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage (Note 3) $\begin{gathered}\text { Human Body Model } \\ \text { Charged Device Model }\end{gathered}$	$\begin{aligned} & 4000 \\ & 2000 \end{aligned}$	V
ILatchup	Latchup Performance (Note 4)	± 100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Applicable to devices with outputs that may be tri-stated.
2. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2 ounce copper trace no air flow per JESD51-7.
3. HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued
4. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	Positive DC Supply Voltage		0.9	3.6	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage		0	3.6	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage	Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode ($\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & 3.6 \\ & 3.6 \\ & \hline \end{aligned}$	
T_{A}	Operating Temperature Range		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Transition Rise and Fall Time	$\mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	0	10	ns / V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	High-Level Input Voltage		0.9	-	0.5	-	-	-	V
			1.1 to 1.3	$0.65 \times \mathrm{V}_{\mathrm{CC}}$	-	-	$0.65 \times V_{\text {cc }}$	-	
			1.4 to 1.6	$0.65 \times \mathrm{V}_{\mathrm{CC}}$	-	-	$0.65 \times \mathrm{V}_{\mathrm{CC}}$	-	
			1.65 to 1.95	$0.65 \times \mathrm{V}_{\mathrm{CC}}$	-	-	$0.65 \times \mathrm{V}_{\mathrm{CC}}$	-	
			2.3 to <2.7	1.6	-	-	1.6	-	
			2.7 to 3.6	2.0	-	-	2.0	-	
V_{IL}	Low-Level Input Voltage		0.9	-	0.5	-	-	-	V
			1.1 to 1.3	-	-	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	
			1.4 to 1.6	-	-	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.35 \times V_{\mathrm{CC}}$	
			1.65 to 1.95	-	-	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.35 \times V_{\text {cc }}$	
			2.3 to <2.7	-	-	0.7	-	0.7	
			2.7 to 3.6	-	-	0.8	-	0.8	
V_{OH}	High-Level Output Voltage	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}							V
		$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	0.9	-	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.1 \end{gathered}$	-	-	-	
			1.1 to 1.3	$\mathrm{V}_{C C}-0.1$	-	-	$\mathrm{V}_{\mathrm{CC}}-0.1$	-	
			1.4 to 1.6	$\mathrm{V}_{\mathrm{CC}}-0.1$	-	-	$\mathrm{V}_{\mathrm{CC}}-0.1$	-	
			1.65 to 1.95	$\mathrm{V}_{\mathrm{CC}}-0.2$	-	-	$\mathrm{V}_{\mathrm{Cc}}-0.2$	-	
			2.3 to <2.7	$\mathrm{V}_{\mathrm{CC}}-0.2$	-	-	$\mathrm{V}_{\mathrm{CC}}-0.2$	-	
			2.7 to 3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$	-	-	$\mathrm{V}_{\mathrm{CC}}-0.2$	-	
		$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	1.101 .3	$0.75 \times \mathrm{V}_{\mathrm{CC}}$	-	-	$0.75 \times \mathrm{V}_{\mathrm{CC}}$	-	
		$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	1.4 to 1.6	$0.75 \times \mathrm{V}_{\mathrm{CC}}$	-	-	$0.75 \times \mathrm{V}_{\mathrm{CC}}$	-	
		$\mathrm{l}_{\mathrm{OH}}=-6 \mathrm{~mA}$	1.65 to 1.95	1.25	-	-	1.25	-	
			2.3 to <2.7	2.0	-	-	2.0	-	
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.3 to <2.7	1.8	-	-	1.8	-	
			2.7 to 3.6	2.2	-	-	2.2	-	
		$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.3 to <2.7	1.7	-	-	1.7	-	
			2.7 to 3.6	2.4	-	-	2.4	-	
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.7 to 3.6	2.2	-	-	2.2	-	

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Condition	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
VoL	Low-Level Output Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$							V
		$\mathrm{I}_{\text {OL }}=100 \mu \mathrm{~A}$	0.9	-	0.1	-	-	-	
			1.1 to 1.3	-	-	0.1	-	0.1	
			1.4 to 1.6	-	-	0.1	-	0.1	
			1.65 to 1.95	-	-	0.2	-	0.2	
			2.3 to < 2.7	-	-	0.2	-	0.2	
			2.7 to 3.6	-	-	0.2	-	0.2	
		$\mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}$	1.101 .3	-	-	$0.25 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.25 \times \mathrm{V}_{\text {CC }}$	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$	1.4 to 1.6	-	-	$0.25 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.25 \times \mathrm{V}_{\text {CC }}$	
		$\mathrm{l}_{\mathrm{OL}}=6 \mathrm{~mA}$	1.65 to 1.95	-	-	0.3	-	0.3	
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.3 to <2.7	-	-	0.4	-	0.4	
			2.7 to 3.6	-	-	0.4	-	0.4	
		$\mathrm{l}_{\mathrm{OL}}=18 \mathrm{~mA}$	2.3 to <2.7	-	-	0.6	-	0.6	
			2.7 to 3.6	-	-	0.4	-	0.4	
		$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$	2.7 to 3.6	-	-	0.55	-	0.55	
IN	Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 3.6 V	0.9 to 3.6	-	-	± 0.1	-	± 0.5	$\mu \mathrm{A}$
IofF	Power Off Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	0	-	-	0.5	-	0.5	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND	0.9 to 3.6	-	-	0.9	-	0.9	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
$\begin{aligned} & \text { tpLH, } \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Propagation Delay, (A or B) to Y (Figures 3 and 4)	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	0.9	-	14.6	-	-	-	ns
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	1.1 to 1.3	-	6.3	10.1	-	14.6	
			1.4 to 1.6	-	3.4	6.0	-	7.2	
		$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	1.65 to 1.95	-	2.4	4.5	-	5.3	
			2.3 to 2.7	-	1.8	2.6	-	3.7	
			2.7 to 3.6	-	1.5	2.3	-	3.0	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Condition	Typical $\left(\mathrm{T}_{\mathbf{A}}=\mathbf{2 5}^{\circ} \mathbf{C}\right)$	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	2.0	pF
C_{PD}	Power Dissipation Capacitance (Note 5$)$	$\mathrm{f}=10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=0.9$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{CC}	8.0	pF

5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}}$. C_{PD} is used to determine the no-load dynamic power consumption: $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

C_{L} includes probe and jig capacitance
R_{T} is $\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω) $\mathrm{f}=1 \mathrm{MHz}$

Test	Switch Position
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PLZ }} / \mathrm{t}_{\text {PZL }}$	$2 \times \mathrm{V}_{\mathrm{CC}}$
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\text {PZH }}$	GND

Figure 3. Test Circuit

$\mathbf{V}_{\mathbf{C c}}, \mathbf{V}$	$\mathbf{V}_{\mathbf{m i}}, \mathbf{V}$	$\mathbf{V}_{\mathbf{m o}}, \mathbf{V}$	$\mathbf{V}_{\mathbf{Y},} \mathbf{V}$
0.9	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.1
1.1 to 1.3	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.1
1.4 to 1.6	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.1
1.65 to 1.95	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.15
2.3 to 2.7	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.15
3.0 to 3.6	1.5	1.5	0.3

Figure 4. Switching Waveforms

ORDERING INFORMATION

Device	Package	Marking	Pin 1 Orientation (See below)	Shipping †
NC7SV00P5X	SC-88A	V00	Q4	$3000 /$ Tape \& Reel
NC7SV00L6X	MicroPak	F5	Q4	$5000 /$ Tape \& Reel
NC7SV00FHX	MicroPak2	F5	Q4	$5000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Pin 1 Orientation in Tape and Reel

PACKAGE DIMENSIONS

SIP6 1.45X1.0
CASE 127EB
ISSUE O

1. CONFORMS TO JEDEC STANDARD MO-252 VARIATION UAAD
2. DIMENSIONS ARE IN MILLIMETERS
3. DRAWING CONFORMS TO ASME Y14.5M-2009
4. PIN ONE IDENTIFIER IS 2X LENGTH OF ANY

OTHER LINE IN THE MARK CODE LAYOUT.

PACKAGE DIMENSIONS

UDFN6 1.0X1.0, 0.35P
CASE 517DP
ISSUE O

RECOMMENDED LAND PATTERN FOR SPACE CONSTRAINED PCB

SIDE VIEW

NOTES:
A. COMPLIES TO JEDEC MO-252 STANDARD
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009

ALTERNATIVE LAND PATTERN FOR UNIVERSAL APPLICATION

PACKAGE DIMENSIONS

SC-88A (SC-70-5/SOT-353)
CASE 419A-02
ISSUE L

1. DIMENSIONING AND TOLERANCING ER ANSI Y14.5M, 1982
CONTROLLING DIMENSION: INCH.
2. 419A-01 OBSOLETE. NEW STANDARD

419A-02.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.071	0.087	1.80	2.20
B	0.045	0.053	1.15	1.35
C	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026 BSC		0.65 BSC	
H	---	0.004	---	0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	
0.30				
N	0.008		REF	0.20
S	0.079	0.087	0.00	

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Logic Gates category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74HC85N NLU1G32AMUTCG NLV7SZ58DFT2G CD4068BE NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G
NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC32ADTR2G MC74HCT20ADTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G
NLV74HC02ADR2G 74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7
NLV74HC08ADTR2G NLV74HC14ADR2G NLV74HC20ADR2G NLX2G86MUTCG 5962-8973601DA 74LVC2G02HD4-7
NLU1G00AMUTCG 74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G00HK3-7 74LVC2G86HK3-7
NLX1G99DMUTWG NLVVHC1G00DFT2G NLVHC1G08DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ86USG
NLV27WZ00USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7
NLV74HC02ADTR2G NLX1G332CMUTCG NL17SG86P5T5G NL17SZ05P5T5G

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

[^1]: N.C. = No Connect

