ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

TinyLogic ULP-A Buffer with Three-State Output

NC7SV125

The NC7SV125 is a single non-inverting 3-state buffer in tiny footprint packages. The device is designed to operate for $V_{CC} = 0.9 \text{ V}$ to 3.6 V.

Features

- Designed for 0.9 V to 3.6 V V_{CC} Operation
- 1.0 ns t_{PD} at 3.3 V (Typ)
- Inputs/Outputs Over-Voltage Tolerant up to 3.6 V
- I_{OFF} Supports Partial Power Down Protection
- Source/Sink 24 mA at 3.3 V
- Available in SC−88A and MicroPak[™] Packages
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

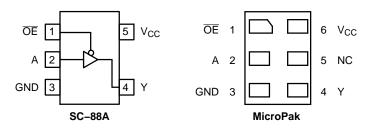


Figure 1. Pinout Diagrams (Top Views)

Figure 2. Logic Symbol

ON

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS

ΚK

SIP6 1.45X1.0 MicroPak CASE 127EB

CC = Specific Device Code

= 2-Digit Lot Run Traceability Code

XY = 2-Digit Date Code Z = Assembly Plant Code

SC-88A CASE 419A-02

XXX = Specific Device Code
M = Date Code

= Pb-Free Package

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 7 of this data sheet.

PIN ASSIGNMENT

Pin	SC88A	MicroPak
1	ŌĒ	ŌĒ
2	А	Α
3	GND	GND
4	Υ	Υ
5	V _{CC}	N.C.
6	-	V _{CC}

N.C. = No Connect

FUNCTION TABLE

Inp	Output	
ŌĒ	А	Υ
L	L	L
L	Н	Н
Н	Х	Z

X = Don't Care

Z = High Impedance State

MAXIMUM RATINGS

Symbol	Char	Value	Unit	
V _{CC}	DC Supply Voltage		-0.5 to +4.3	V
V _{IN}	DC Input Voltage		-0.5 to +4.3	V
V _{OUT}	DC Output Voltage Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V _{CC} = 0 V)		-0.5 to V _{CC} + 0.5 -0.5 to +4.3 -0.5 to +4.3	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	– 50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	-50	mA
I _{OUT}	DC Output Source/Sink Current	±50	mA	
I _{CC} or I _{GND}	DC Supply Current per Supply Pin or	Ground Pin	±50	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case	for 10 Seconds	260	°C
TJ	Junction Temperature Under Bias		+150	°C
$\theta_{\sf JA}$	Thermal Resistance (Note 2)	SC-88A MicroPak	377 154	°C/W
P _D	Power Dissipation in Still Air	SC-88A MicroPak	332 812	mW
MSL	Moisture Sensitivity		Level 1	-
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
V _{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model Charged Device Model	2000 1000	V
I _{Latchup}	Latchup Performance (Note 4)		±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Applicable to devices with outputs that may be tri–stated.

2. Measured with minimum pad spacing on an FR4 board, using 10 mm–by–1 inch, 2 ounce copper trace no air flow per JESD51–7.

3. HBM tested to EIA / JESD22–A114–A. CDM tested to JESD22–C101–A. JEDEC recommends that ESD qualification to EIA/JESD22–A115A

- (Machine Model) be discontinued.
- 4. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Unit
V _{CC}	Positive DC Supply Voltage		0.9	3.6	V
V _{IN}	DC Input Voltage		0	3.6	V
V _{OUT}	DC Output Voltage	Active–Mode (High or Low State) Tri–State Mode (Note 1) Power–Down Mode (V _{CC} = 0 V)	0 0 0	V _{CC} 3.6 3.6	
T _A	Operating Temperature Range		-40	+85	°C
t _r , t _f	Input Transition Rise and Fall Time	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0	10	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

				Т	A = 25°	С	$T_A = -40^{\circ}$	C to +85°C	
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
V _{IH}	High-Level Input		0.9	-	0.5	-	-	-	V
	Voltage		1.1 to 1.3	0.65 x V _{CC}	-	-	0.65 x V _{CC}	-	1
			1.4 to 1.6	0.65 x V _{CC}	-	-	0.65 x V _{CC}	-	1
			1.65 to 1.95	0.65 x V _{CC}	-	-	0.65 x V _{CC}	-	1
			2.3 to <2.7	1.6	-	-	1.6	-	
			2.7 to 3.6	2.0	-	-	2.0	-	
V _{IL}	Low-Level Input		0.9	-	0.5	-	-	-	V
	Voltage		1.1 to 1.3	-	_	0.35 x V _{CC}	_	0.35 x V _{CC}	1
			1.4 to 1.6	-	-	0.35 x V _{CC}	-	0.35 x V _{CC}	
			1.65 to 1.95	-	-	0.35 x V _{CC}	_	0.35 x V _{CC}	
			2.3 to <2.7	-	_	0.7	_	0.7	
			2.7 to 3.6	-	_	0.8	_	0.8	
V _{OH}	High-Level Output	$V_{IN} = V_{IH}$ or V_{IL}							V
	Voltage	I _{OH} = -100 μA	0.9	_	V _{CC} - 0.1	_	_	-	
			1.1 to 1.3	V _{CC} - 0.1	_	-	V _{CC} - 0.1	-	
			1.4 to 1.6	V _{CC} – 0.1	-	-	V _{CC} – 0.1	-	
			1.65 to 1.95	V _{CC} - 0.2	_	-	V _{CC} - 0.2	-	
			2.3 to <2.7	V _{CC} - 0.2	-	-	V _{CC} - 0.2	-	
			2.7 to 3.6	V _{CC} – 0.2	-	-	V _{CC} – 0.2	-	
		$I_{OH} = -2 \text{ mA}$	1.1 o 1.3	0.75 x V _{CC}	-	-	0.75 x V _{CC}	-	
		$I_{OH} = -4 \text{ mA}$	1.4 to 1.6	0.75 x V _{CC}	-	-	0.75 x V _{CC}	-	
		$I_{OH} = -6 \text{ mA}$	1.65 to 1.95	1.25	_	-	1.25	-	
			2.3 to <2.7	2.0	_	-	2.0	-	
		$I_{OH} = -12 \text{ mA}$	2.3 to <2.7	1.8	-	-	1.8	-	
			2.7 to 3.6	2.2	-	-	2.2	-	
		I _{OH} = -18 mA	2.3 to <2.7	1.7	-	-	1.7	-	
			2.7 to 3.6	2.4	-	-	2.4	-	
		$I_{OH} = -24 \text{ mA}$	2.7 to 3.6	2.2	_	-	2.2	_	

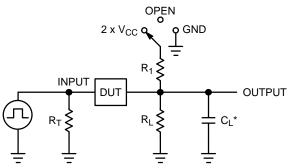
DC ELECTRICAL CHARACTERISTICS (continued)

				T _A = 25°	С	$T_A = -40^\circ$	°C to +85°C	
Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
Low-Level	$V_{IN} = V_{IH}$ or V_{IL}							V
Output Voltage	I _{OL} = 100 μA	0.9	-	0.1	_	1	-	
		1.1 to 1.3	-	-	0.1	ı	0.1	
		1.4 to 1.6	-	-	0.1	1	0.1	
		1.65 to 1.95	-	-	0.2	1	0.2	
		2.3 to < 2.7	-	-	0.2	1	0.2	
		2.7 to 3.6	-	_	0.2	1	0.2	
	I _{OL} = 2 mA	1.1 o 1.3	-	_	0.25 x V _{CC}	1	0.25 x V _{CC}	
	I _{OL} = 4 mA	1.4 to 1.6	-	_	0.25 x V _{CC}	1	0.25 x V _{CC}	
	I _{OL} = 6 mA	1.65 to 1.95	-	_	0.3	1	0.3	
	I _{OL} = 12 mA	2.3 to <2.7	-	_	0.4	1	0.4	
		2.7 to 3.6	-	_	0.4	1	0.4	
	I _{OL} = 18 mA	2.3 to <2.7	-	-	0.6	_	0.6	
		2.7 to 3.6	-	_	0.4	1	0.4	
	I _{OL} = 24 mA	2.7 to 3.6	-	-	0.55	_	0.55	
Input Leakage Current	V _{IN} = 0 V to 3.6 V	0.9 to 3.6	-	-	±0.1	-	±0.5	μΑ
3-State Output Leakage Current	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ V to 3.6 V	0.9 to 3.6	_	-	±0.5	_	±0.5	μΑ
Power Off Leakage Current	V _{IN} = 0 V to 3.6 V or V _{OUT} = 0 V to 3.6 V	0	-	-	0.5	_	0.5	μΑ
Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	0.9 to 3.6	-	-	0.9	1	0.9	μΑ
	Low-Level Output Voltage Input Leakage Current 3-State Output Leakage Current Power Off Leakage Current Quiescent Supply	$ \begin{array}{c} \text{Low-Level} \\ \text{Output Voltage} \end{array} \begin{array}{c} V_{\text{IN}} = V_{\text{IH}} \text{ or } V_{\text{IL}} \\ I_{\text{OL}} = 100 \ \mu\text{A} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 2 \ \text{mA} \\ I_{\text{OL}} = 4 \ \text{mA} \\ I_{\text{OL}} = 6 \ \text{mA} \\ I_{\text{OL}} = 12 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 12 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 2 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 12 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 12 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 12 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 12 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 18 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24 \ \text{mA} \end{array} \\ \\ \begin{array}{c} I_{\text{OL}} = 24$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c } \hline \textbf{Parameter} & \textbf{Condition} & \textbf{V}_{\textbf{CC}}\left(\textbf{V}\right) & \textbf{Min} \\ \hline Low-Level \\ Output Voltage & \hline & & & & & & & & & & & & & & & & & $	$ \begin{array}{ c c c c c } \hline \textbf{Parameter} & \textbf{Condition} & \textbf{V}_{\textbf{CC}}\left(\textbf{V}\right) & \textbf{Min} & \textbf{Typ} \\ \hline \textbf{Low-Level} \\ \textbf{Output Voltage} & \hline \textbf{I}_{\textbf{OL}} = 100~\mu \textbf{A} & 0.9 & - & 0.1 \\ \hline & 1.1~to~13 & - & - & \\ \hline & 1.65~to~195 & - & - & \\ \hline & 2.3~to~27 & - & - & \\ \hline & 2.7~to~36 & - & - & \\ \hline & 1.65~to~195 & - & - & \\ \hline & 2.3~to~27 & - & - & \\ \hline & 1.65~to~195 & - & - & \\ \hline & 2.3~to~36 & - & - & \\ \hline & 1_{\textbf{OL}} = 2~m \textbf{A} & 1.1~o~13 & - & - \\ \hline & 1_{\textbf{OL}} = 4~m \textbf{A} & 1.4~to~16 & - & - \\ \hline & 1_{\textbf{OL}} = 6~m \textbf{A} & 1.65~to~195 & - & - \\ \hline & 1_{\textbf{OL}} = 12~m \textbf{A} & 2.3~to~27 & - & - \\ \hline & 2.7~to~36 & - & - & - \\ \hline & 1_{\textbf{OL}} = 18~m \textbf{A} & 2.3~to~27 & - & - \\ \hline & 2.7~to~36 & - & - & - \\ \hline & 1_{\textbf{OL}} = 24~m \textbf{A} & 27~to~36 & - & - \\ \hline & 1_{\textbf{OL}} = 24~m \textbf{A} & 27~to~36 & - & - \\ \hline & 2.3~to~36 & - & - & - \\ \hline $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter Condition V _{CC} (V) Min Typ Max Min	Parameter Condition V _{CC} (V) Min Typ Max Min Max

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS

				T _A = 25°C		:	T _A = -40°C	to +85°C	
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
t _{PLH} ,	Propagation Delay,	$R_L = 1 \text{ M}\Omega$, $C_L = 15 \text{ pF}$	0.9	_	13	_	-	-	ns
t_{PHL}	A to Y (Figures 3 and 4)	$R_L = 2 \text{ k}\Omega$, $C_L = 15 \text{ pF}$	1.1 to 1.3	-	6.0	9.8	_	14.9	
			1.4 to 1.6	_	3.5	5.3	_	5.7	
		$R_L = 500 \ \Omega, \ C_L = 30 \ pF$	1.65 to 1.95	-	3.0	4.3	_	4.6	
			2.3 to 2.7	_	2.0	2.8	-	3.0	
			2.7 to 3.6	_	1.0	2.6	_	2.8	
t _{PZH} ,	Output Enable Time,	$R_1 = R_L = 1 \text{ k}\Omega,$	0.9	-	14	-	_	_	ns
t_{PZL}	OE to Y (Figures 3 and 4)	$C_L = 30 \text{ pF}$	1.1 to 1.3	_	6.0	9.7	_	16.4	
	(· · · · · · · · · · · · · · · · · · ·		1.4 to 1.6	-	4.0	6.0	_	7.5	
			1.65 to 1.95	-	3.0	4.5	_	5.0	
			2.3 to 2.7	_	2.0	3.0	_	3.4	
			2.7 to 3.6	_	1.2	2.6	_	2.9	1

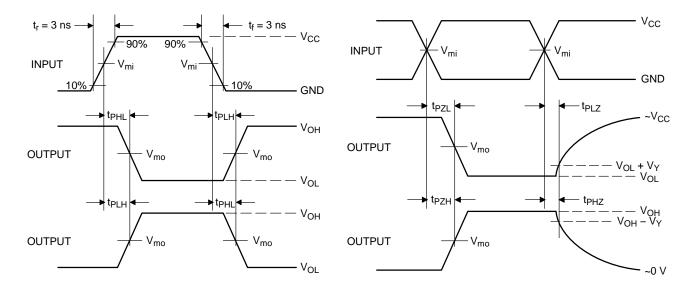

AC ELECTRICAL CHARACTERISTICS (continued)

				Т	T _A = 25°C	;	T _A = -40°C	C to +85°C	
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
t _{PHZ} ,	Output Disable Time,	$R_1 = R_L = 1 \text{ k}\Omega,$ $C_L = 30 \text{ pF}$	0.9	_	14	_	_	-	ns
t_{PLZ}	OE to Y (Figures 3 and 4)	$C_L = 30 \text{ pF}$	1.1 to 1.3	-	5.0	9.5	-	14.0	
			1.4 to 1.6	-	3.0	5.5	-	7.0	
			1.65 to 1.95	-	2.0	5.6	_	5.8	
			2.3 to 2.7	-	1.5	4.2	-	5.0	
			2.7 to 3.6	_	1.0	3.9	_	4.2	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Condition	Typical (T _A = 25°C)	Unit
C _{IN}	Input Capacitance	V _{CC} = 0 V	2.0	pF
C _{OUT}	Output Capacitance	V _{CC} = 0 V	4.5	pF
C _{PD}	Power Dissipation Capacitance (Note 5)	f = 10 MHz, V_{CC} = 0.9 to 3.6 V, V_{IN} = 0 V or V_{CC}	10.0	pF

^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption: P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.


Test	Switch Position
t _{PLH} / t _{PHL}	Open
t _{PLZ} / t _{PZL}	2 x V _{CC}
t _{PHZ} / t _{PZH}	GND

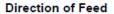
 C_L includes probe and jig capacitance

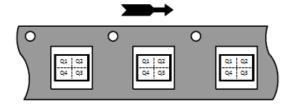
 R_T is Z_{OUT} of pulse generator (typically 50 Ω)

f = 1 MHz

Figure 3. Test Circuit

V _{CC} , V	V _{mi} , V	V _{mo} , V	V _Y , V
0.9	V _{CC} /2	V _{CC} /2	0.1
1.1 to 1.3	V _{CC} /2	V _{CC} /2	0.1
1.4 to 1.6	V _{CC} /2	V _{CC} /2	0.1
1.65 to 1.95	V _{CC} /2	V _{CC} /2	0.15
2.3 to 2.7	V _{CC} /2	V _{CC} /2	0.15
3.0 to 3.6	1.5	1.5	0.3

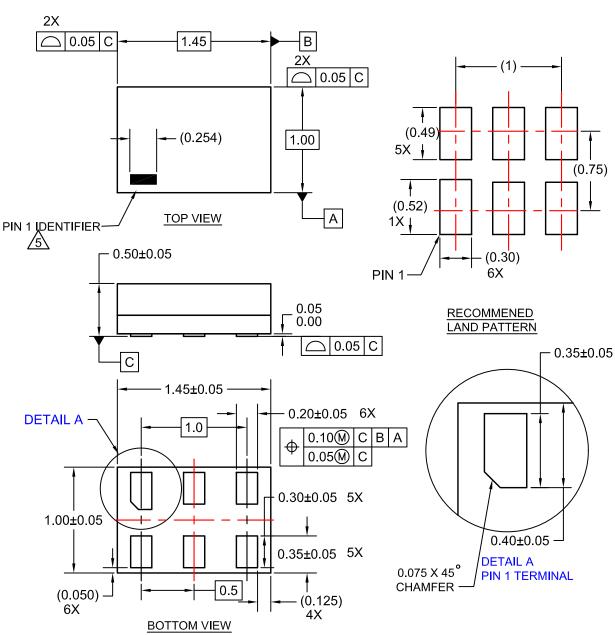

Figure 4. Switching Waveforms


ORDERING INFORMATION

Device	Package	Marking	Pin 1 Orientation (See below)	Shipping [†]
NC7SV125P5X	SC-88A	V25	Q4	3000 / Tape & Reel
NC7SV125L6X	MicroPak	H6	Q4	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Pin 1 Orientation in Tape and Reel



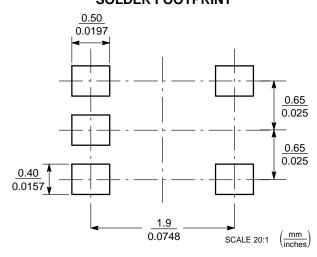
MicroPak is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

PACKAGE DIMENSIONS

SIP6 1.45X1.0 CASE 127EB ISSUE O

- NOTES:
- 1. CONFORMS TO JEDEC STANDARD MO-252 VARIATION UAAD
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-2009
- 4.PIN ONE IDENTIFIER IS 2X LENGTH OF ANY
 - OTHER LINE IN THE MARK CODE LAYOUT.

PACKAGE DIMENSIONS


SC-88A (SC-70-5/SOT-353) CASE 419A-02 **ISSUE L**

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
- 419A-01 OBSOLETE. NEW STANDARD 419A-02
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
С	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026 BSC		0.65 BSC	
Н		0.004		0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
N	0.008 REF		0.20 REF	
S	0.079	0.087	2 00	2 20

SOLDER FOOTPRINT

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com TECHNICAL SUPPORT

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

ON Semiconductor Website: www.onsemi.com Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B
042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 59628982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1
74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG
LE87100NQC LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC
LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NLV74VHC125DTR2G NL17SG126DFT2G