## TinyLogic ULP-A 2-Input Non-Inverting Multiplexer <br> NC7SV157

The NC7SV157 is a single 2-input non-inverting multiplexer in tiny footprint packages. The device is designed to operate for $\mathrm{V}_{\mathrm{CC}}=0.9 \mathrm{~V}$ to 3.6 V .

## Features

- Designed for 0.9 V to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- $1.9 \mathrm{~ns} \mathrm{t}_{\mathrm{PD}}$ at 3.3 V (Typ)
- Inputs/Outputs Over-Voltage Tolerant up to 3.6 V
- I IFF Supports Partial Power Down Protection
- Source/Sink 24 mA at 3.3 V
- Available in SC-88A and MicroPak ${ }^{\text {TM }}$ Packages
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant



| CC | $=$ Specific Device Code |
| :--- | :--- |
| KK | $=2$-Digit Lot Run Traceability Code |
| XY | $=2$-Digit Date Code |
| Z | $=$ Assembly Plant Code |



XXX = Specific Device Code
M = Date Code

- = Pb-Free Package


## ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 6 of this data sheet.

Figure 1. Pinout Diagrams (Top Views)


Figure 2. Logic Symbol

PIN ASSIGNMENT

| Pin | Function |
| :---: | :---: |
| 1 | I 1 |
| 2 | GND |
| 3 | IO |
| 4 | Z |
| 5 | $\mathrm{~V}_{\mathrm{CC}}$ |
| 6 | S |

FUNCTION TABLE

| Inputs |  |  | Output |
| :---: | :---: | :---: | :---: |
| $\mathbf{S}$ | $\mathrm{I}_{\mathbf{1}}$ | $\mathrm{I}_{\mathbf{0}}$ | $\mathbf{Z}=\left(\mathbf{I}_{\mathbf{0}}\right) \cdot(\mathbf{( \mathbf { S }})+\left(\mathbf{I}_{\mathbf{1}}\right) \cdot(\mathbf{( S )}$ |
| L | X | L | L |
| L | X | H | H |
| H | L | X | L |
| H | H | X | H |

[^0]MAXIMUM RATINGS

\begin{tabular}{|c|c|c|c|}
\hline Symbol \& Characteristics \& Value \& Unit \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) \& DC Supply Voltage \& -0.5 to +4.3 \& V \\
\hline \(\mathrm{V}_{\text {IN }}\) \& DC Input Voltage \& -0.5 to +4.3 \& V \\
\hline \(\mathrm{V}_{\text {OUT }}\) \& \begin{tabular}{l}
DC Output Voltage \\
Active-Mode (High or Low State) \\
Tri-State Mode (Note 1) \\
Power-Down Mode \(\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)\)
\end{tabular} \& \[
\begin{gathered}
-0.5 \text { to } \mathrm{V}_{\mathrm{cc}}+0.5 \\
-0.5 \text { to }+4.3 \\
-0.5 \text { to }+4.3
\end{gathered}
\] \& V \\
\hline \(\mathrm{I}_{\text {IK }}\) \& DC Input Diode Current \(\mathrm{V}_{\text {IN }}<\mathrm{GND}\) \& -50 \& mA \\
\hline lok \& DC Output Diode Current \(\mathrm{V}_{\text {OUT }}<\mathrm{GND}\) \& -50 \& mA \\
\hline IOUT \& DC Output Source/Sink Current \& \(\pm 50\) \& mA \\
\hline \(\mathrm{I}_{\text {CC }}\) or \(\mathrm{I}_{\text {GND }}\) \& DC Supply Current per Supply Pin or Ground Pin \& \(\pm 50\) \& mA \\
\hline \(\mathrm{T}_{\text {STG }}\) \& Storage Temperature Range \& -65 to +150 \& \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{L}}\) \& Lead Temperature, 1 mm from Case for 10 Seconds \& 260 \& \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{J}\) \& Junction Temperature Under Bias \& +150 \& \({ }^{\circ} \mathrm{C}\) \\
\hline \(\theta_{\text {JA }}\) \& Thermal Resistance (Note 2) \(\begin{array}{r}\text { SC-88A } \\ \text { MicroPak }\end{array}\) \& \[
\begin{aligned}
\& 377 \\
\& 154
\end{aligned}
\] \& \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline \(\mathrm{P}_{\mathrm{D}}\) \& Power Dissipation in Still Air

SC-88A

MicroPak \& $$
\begin{aligned}
& 332 \\
& 812
\end{aligned}
$$ \& mW <br>

\hline MSL \& Moisture Sensitivity \& Level 1 \& - <br>
\hline $\mathrm{F}_{\mathrm{R}}$ \& Flammability Rating Oxygen Index: 28 to 34 \& UL 94 V-0 @ 0.125 in \& - <br>

\hline $\mathrm{V}_{\text {ESD }}$ \& ESD Withstand Voltage (Note 3) $\begin{array}{r}\text { Human Body Model } \\ \text { Charged Device Model }\end{array}$ \& $$
\begin{aligned}
& 2000 \\
& 1000
\end{aligned}
$$ \& V <br>

\hline ILatchup \& Latchup Performance (Note 4) \& $\pm 100$ \& mA <br>
\hline
\end{tabular}

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Applicable to devices with outputs that may be tri-stated.
2. Measured with minimum pad spacing on an FR4 board, using 10 mm -by- 1 inch, 2 ounce copper trace no air flow per JESD51-7.
3. HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued.
4. Tested to EIA/JESD78 Class II.

## NC7SV157

RECOMMENDED OPERATING CONDITIONS

| Symbol | Parameter |  | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Positive DC Supply Voltage |  | 0.9 | 3.6 | V |
| $\mathrm{V}_{\text {IN }}$ | DC Input Voltage |  | 0 | 3.6 | V |
| $\mathrm{V}_{\text {OUT }}$ | DC Output Voltage | Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode ( $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ ) | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & 3.6 \\ & 3.6 \\ & \hline \end{aligned}$ |  |
| $\mathrm{T}_{\mathrm{A}}$ | Operating Temperature Range |  | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | Input Transition Rise and Fall Time | $\mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ | 0 | 10 | $\mathrm{ns} / \mathrm{V}$ |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

| Symbol | Parameter | Condition | $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max | Min | Max |  |
| $\mathrm{V}_{\mathrm{IH}}$ | High-Level Input Voltage |  | 0.9 | - | 0.5 | - | - | - | V |
|  |  |  | 1.1 to 1.3 | $0.65 \times \mathrm{V}_{\mathrm{CC}}$ | - | - | $0.65 \times V_{\text {cc }}$ | - |  |
|  |  |  | 1.4 to 1.6 | $0.65 \times \mathrm{V}_{\mathrm{CC}}$ | - | - | $0.65 \times \mathrm{V}_{\mathrm{CC}}$ | - |  |
|  |  |  | 1.65 to 1.95 | $0.65 \times \mathrm{V}_{\mathrm{CC}}$ | - | - | $0.65 \times \mathrm{V}_{\mathrm{CC}}$ | - |  |
|  |  |  | 2.3 to <2.7 | 1.6 | - | - | 1.6 | - |  |
|  |  |  | 2.7 to 3.6 | 2.0 | - | - | 2.0 | - |  |
| $\mathrm{V}_{\mathrm{IL}}$ | Low-Level Input Voltage |  | 0.9 | - | 0.5 | - | - | - | V |
|  |  |  | 1.1 to 1.3 | - | - | $0.35 \times \mathrm{V}_{\mathrm{CC}}$ | - | $0.35 \times \mathrm{V}_{\mathrm{CC}}$ |  |
|  |  |  | 1.4 to 1.6 | - | - | $0.35 \times \mathrm{V}_{\mathrm{CC}}$ | - | $0.35 \times V_{\mathrm{CC}}$ |  |
|  |  |  | 1.65 to 1.95 | - | - | $0.35 \times \mathrm{V}_{\mathrm{CC}}$ | - | $0.35 \times V_{\text {cc }}$ |  |
|  |  |  | 2.3 to <2.7 | - | - | 0.7 | - | 0.7 |  |
|  |  |  | 2.7 to 3.6 | - | - | 0.8 | - | 0.8 |  |
| $\mathrm{V}_{\mathrm{OH}}$ | High-Level Output Voltage | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$ |  |  |  |  |  |  | V |
|  |  | $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ | 0.9 | - | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.1 \end{gathered}$ | - | - | - |  |
|  |  |  | 1.1 to 1.3 | $\mathrm{V}_{C C}-0.1$ | - | - | $\mathrm{V}_{\mathrm{CC}}-0.1$ | - |  |
|  |  |  | 1.4 to 1.6 | $\mathrm{V}_{\mathrm{CC}}-0.1$ | - | - | $\mathrm{V}_{\mathrm{CC}}-0.1$ | - |  |
|  |  |  | 1.65 to 1.95 | $\mathrm{V}_{\mathrm{CC}}-0.2$ | - | - | $\mathrm{V}_{\mathrm{Cc}}-0.2$ | - |  |
|  |  |  | 2.3 to <2.7 | $\mathrm{V}_{\mathrm{CC}}-0.2$ | - | - | $\mathrm{V}_{\mathrm{CC}}-0.2$ | - |  |
|  |  |  | 2.7 to 3.6 | $\mathrm{V}_{\mathrm{CC}}-0.2$ | - | - | $\mathrm{V}_{\mathrm{CC}}-0.2$ | - |  |
|  |  | $\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$ | 1.101 .3 | $0.75 \times \mathrm{V}_{\mathrm{CC}}$ | - | - | $0.75 \times \mathrm{V}_{\mathrm{CC}}$ | - |  |
|  |  | $\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$ | 1.4 to 1.6 | $0.75 \times \mathrm{V}_{\mathrm{CC}}$ | - | - | $0.75 \times \mathrm{V}_{\mathrm{CC}}$ | - |  |
|  |  | $\mathrm{l}_{\mathrm{OH}}=-6 \mathrm{~mA}$ | 1.65 to 1.95 | 1.25 | - | - | 1.25 | - |  |
|  |  |  | 2.3 to <2.7 | 2.0 | - | - | 2.0 | - |  |
|  |  | $\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$ | 2.3 to <2.7 | 1.8 | - | - | 1.8 | - |  |
|  |  |  | 2.7 to 3.6 | 2.2 | - | - | 2.2 | - |  |
|  |  | $\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$ | 2.3 to <2.7 | 1.7 | - | - | 1.7 | - |  |
|  |  |  | 2.7 to 3.6 | 2.4 | - | - | 2.4 | - |  |
|  |  | $\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$ | 2.7 to 3.6 | 2.2 | - | - | 2.2 | - |  |

DC ELECTRICAL CHARACTERISTICS (continued)

| Symbol | Parameter | Condition | $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max | Min | Max |  |
| $\mathrm{V}_{\text {OL }}$ | Low-Level Output Voltage | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |  |  |  |  |  |  | V |
|  |  | $\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$ | 0.9 | - | 0.1 | - | - | - |  |
|  |  |  | 1.1 to 1.3 | - | - | 0.1 | - | 0.1 |  |
|  |  |  | 1.4 to 1.6 | - | - | 0.1 | - | 0.1 |  |
|  |  |  | 1.65 to 1.95 | - | - | 0.2 | - | 0.2 |  |
|  |  |  | 2.3 to < 2.7 | - | - | 0.2 | - | 0.2 |  |
|  |  |  | 2.7 to 3.6 | - | - | 0.2 | - | 0.2 |  |
|  |  | $\mathrm{l} \mathrm{OL}=2 \mathrm{~mA}$ | 1.101 .3 | - | - | $0.25 \times \mathrm{V}_{\mathrm{CC}}$ | - | $0.25 \times \mathrm{V}_{\mathrm{CC}}$ |  |
|  |  | $\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$ | 1.4 to 1.6 | - | - | $0.25 \times \mathrm{V}_{\mathrm{CC}}$ | - | $0.25 \times \mathrm{V}_{\mathrm{CC}}$ |  |
|  |  | $\mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA}$ | 1.65 to 1.95 | - | - | 0.3 | - | 0.3 |  |
|  |  | $\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$ | 2.3 to <2.7 | - | - | 0.4 | - | 0.4 |  |
|  |  |  | 2.7 to 3.6 | - | - | 0.4 | - | 0.4 |  |
|  |  | $\mathrm{l}_{\mathrm{OL}}=18 \mathrm{~mA}$ | 2.3 to <2.7 | - | - | 0.6 | - | 0.6 |  |
|  |  |  | 2.7 to 3.6 | - | - | 0.4 | - | 0.4 |  |
|  |  | $\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$ | 2.7 to 3.6 | - | - | 0.55 | - | 0.55 |  |
| IN | Input Leakage Current | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 3.6 V | 0.9 to 3.6 | - | - | $\pm 0.1$ | - | $\pm 0.5$ | $\mu \mathrm{A}$ |
| IofF | Power Off Leakage Current | $\begin{aligned} & \mathrm{V}_{\text {IN }}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$ | 0 | - | - | 0.5 | - | 0.5 | $\mu \mathrm{A}$ |
| ${ }^{\text {c }}$ C | Quiescent Supply Current | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND | 0.9 to 3.6 | - | - | 0.9 | - | 0.9 | $\mu \mathrm{A}$ |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

## AC ELECTRICAL CHARACTERISTICS

| Symbol | Parameter | Condition | $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max | Min | Max |  |
| $\begin{aligned} & \text { tpLH, } \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$ | Propagation Delay, (S or $\mathrm{I}_{0}$ or $\mathrm{I}_{1}$ ) to Z (Figures 3 and 4) | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ | 0.9 | - | 19.1 | - | - | - | ns |
|  |  | $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ | 1.1 to 1.3 | - | 6.3 | 15.5 | - | 18.8 |  |
|  |  |  | 1.4 to 1.6 | - | 3.8 | 8.5 | - | 9.5 |  |
|  |  | $\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ | 1.65 to 1.95 | - | 3.1 | 6.7 | - | 7.5 |  |
|  |  |  | 2.3 to 2.7 | - | 2.2 | 4.1 | - | 4.4 |  |
|  |  |  | 2.7 to 3.6 | - | 1.9 | 3.4 | - | 3.6 |  |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

CAPACITIVE CHARACTERISTICS

| Symbol | Parameter | Test Condition | Typical $\left(\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}\right)$ | Unit |
| :---: | :--- | :--- | :---: | :---: |
| $\mathrm{C}_{\mathrm{IN}}$ | Input Capacitance | $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ | 2.0 | pF |
| $\mathrm{C}_{\mathrm{OUT}}$ | Output Capacitance | $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ | 4.5 | pF |
| $\mathrm{C}_{\mathrm{PD}}$ | Power Dissipation Capacitance (Note 5$)$ | $\mathrm{f}=10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=0.9$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}$ | 10.0 | pF |

5. $\mathrm{C}_{\mathrm{PD}}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{P D} \bullet \mathrm{~V}_{\mathrm{CC}} \bullet \mathrm{f}_{\text {in }}+\mathrm{I}_{\mathrm{CC}}$. $\mathrm{C}_{P D}$ is used to determine the no-load dynamic power consumption: $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

$\mathrm{C}_{\mathrm{L}}$ includes probe and jig capacitance
$\mathrm{R}_{\mathrm{T}}$ is $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically $50 \Omega$ ) $\mathrm{f}=1 \mathrm{MHz}$

| Test | Switch Position |
| :---: | :---: |
| $\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$ | Open |
| $\mathrm{t}_{\text {PLZ }} / \mathrm{t}_{\text {PZL }}$ | $2 \times \mathrm{V}_{\mathrm{CC}}$ |
| $\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\text {PZH }}$ | GND |

Figure 3. Test Circuit


| $\mathbf{V}_{\mathbf{C C}}, \mathbf{V}$ | $\mathbf{V}_{\mathbf{m i}}, \mathbf{V}$ | $\mathbf{V}_{\mathbf{m o}} \mathbf{V}$ | $\mathbf{V}_{\mathbf{Y}}, \mathbf{V}$ |
| :---: | :---: | :---: | :---: |
| 0.9 | $\mathrm{~V}_{\mathrm{CC}} / 2$ | $\mathrm{~V}_{\mathrm{CC}} / 2$ | 0.1 |
| 1.1 to 1.3 | $\mathrm{~V}_{\mathrm{CC}} / 2$ | $\mathrm{~V}_{\mathrm{CC}} / 2$ | 0.1 |
| 1.4 to 1.6 | $\mathrm{~V}_{\mathrm{CC}} / 2$ | $\mathrm{~V}_{\mathrm{CC}} / 2$ | 0.1 |
| 1.65 to 1.95 | $\mathrm{~V}_{\mathrm{CC}} / 2$ | $\mathrm{~V}_{\mathrm{CC}} / 2$ | 0.15 |
| 2.3 to 2.7 | $\mathrm{~V}_{\mathrm{CC}} / 2$ | $\mathrm{~V}_{\mathrm{CC}} / 2$ | 0.15 |
| 3.0 to 3.6 | 1.5 | 1.5 | 0.3 |

Figure 4. Switching Waveforms

ORDERING INFORMATION

| Device | Package | Marking | Pin 1 Orientation <br> (See below) | Shipping $^{\dagger}$ |
| :--- | :---: | :---: | :---: | :---: |
| NC7SV157P6X | SC-88A | VF7 | Q4 | $3000 /$ Tape \& Reel |
| NC7SV157L6X | MicroPak | H9 | Q4 | $5000 /$ Tape \& Reel |

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Pin 1 Orientation in Tape and Reel


## NC7SV157

## PACKAGE DIMENSIONS

SIP6 1.45X1.0
CASE 127EB
ISSUE O


1. CONFORMS TO JEDEC STANDARD MO-252 VARIATION UAAD
2. DIMENSIONS ARE IN MILLIMETERS
3. DRAWING CONFORMS TO ASME Y14.5M-2009
4. PIN ONE IDENTIFIER IS 2X LENGTH OF ANY

OTHER LINE IN THE MARK CODE LAYOUT.

## NC7SV157

## PACKAGE DIMENSIONS

## SC-88/SC70-6/SOT-363 <br> CASE 419B-02

ISSUE Y

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


#### Abstract

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.


## PUBLICATION ORDERING INFORMATION

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers \& Demultiplexers category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
MC74HC163ADTG 74HC253N NLV74VHC1G01DFT1G TC74AC138P(F) NLV14051BDR2G NLV74HC238ADTR2G COMX-CAR-210
5962-8607001EA NTE74LS247 5962-8756601EA SN74LS148N 8CA3052APGGI8 TC74VHC138F(EL,K,F PI3B3251LE PI3B3251QE
NTE4028B NTE4514B NTE4515B NTE4543B NTE4547B NTE74LS249 NLV74HC4851AMNTWG MC74LVX257DG
M74HCT4851ADWR2G AP4373AW5-7-01 NL7SZ19DBVT1G MC74LVX257DTR2G 74VHC4066AFT(BJ) 74VHCT138AFT(BJ)
74HC158D.652 74HC4052D(BJ) 74VHC138MTC COMX-CAR-P1 JM38510/65852BEA 74VHC138MTCX 74HC138D(BJ) NL7SZ19DFT2G 74AHCT138T16-13 74LCX138FT(AJ) 74LCX157FT(AJ) NL7SZ18MUR2G PCA9540BD,118 QS3VH16233PAG8

SNJ54HC251J SN54LS139AJ SN74CBTLV3257PWG4 SN74ALS156DR SN74AHCT139PWR 74HC251D.652 74HC257D. 652


[^0]:    H = HIGH Logic Level
    L = LOW Logic Level
    X = Don't Care

