TinyLogic ULP-A 1-of-2 Decoder/Demultiplexer

NC7SV19

The NC7SV19 is a 1–of–2 decoder/demultiplexer in tiny footprint packages. The device is designed to operate for V_{CC} = 0.9 V to 3.6 V.

Features

- Designed for 0.9 V to 3.6 V V_{CC} Operation
- 1.7 ns t_{PD} at 3.3 V (Typ)
- Inputs/Outputs Over-Voltage Tolerant up to 3.6 V
- I_{OFF} Supports Partial Power Down Protection
- Source/Sink 24 mA at 3.3 V
- Available in SC-88 and MicroPak[™] Packages
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

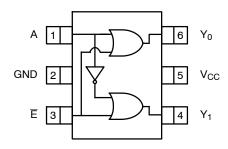


Figure 1. SC-88 (Top View)

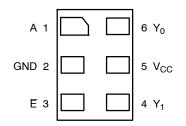
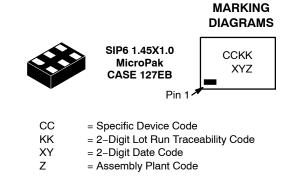



Figure 2. MicroPak (Top Through View)

PIN ASSIGNMENT

Pin	Function
1	А
2	GND
3	Ē
4	Y ₁
5	V _{CC}
6	Y ₀

XXX = Specific Device Code M = Date Code

= Pb-Free Package

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 6 of this data sheet.

FUNCTION TABLE

Inp	uts	Output				
Α	Ē	$Y_0 = A + \overline{E}$	$Y_1 = \overline{A} + \overline{E}$			
L	L	L	Н			
Н	L	Н	L			
Х	Н	Н	Н			

H = HIGH Logic Level

L = LOW Logic Level

X = Don't Care

MAXIMUM RATINGS

Symbol	Characteristic	s	Value	Unit	
V _{CC}	DC Supply Voltage		-0.5 to +4.3	V	
V _{IN}	DC Input Voltage		-0.5 to +4.3	V	
V _{OUT}	DC Output Voltage	Active–Mode (High or Low State) Tri–State Mode (Note 1) Power–Down Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to +4.3 -0.5 to +4.3	V	
I _{IK}	DC Input Diode Current	V _{IN} < GND	-50	mA	
I _{OK}	DC Output Diode Current	OC Output Diode Current V _{OUT} < GND			
IOUT	DC Output Source/Sink Current	±50	mA		
I _{CC} or I _{GND}	DC Supply Current per Supply Pin or Ground F	Pin	±50	mA	
T _{STG}	Storage Temperature Range	-65 to +150	°C		
ΤL	Lead Temperature, 1 mm from Case for 10 Sec	conds	260	°C	
TJ	Junction Temperature Under Bias		+150	°C	
θ_{JA}	Thermal Resistance (Note 2)	SC-88 MicroPak	377 154	°C/W	
PD	Power Dissipation in Still Air	SC-88 MicroPak	332 812	mW	
MSL	Moisture Sensitivity		Level 1	-	
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-	
V_{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model Charged Device Model	2000 1000	V	
I _{Latchup}	Latchup Performance (Note 4)		±100	mA	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

should not be assumed, damage may occur and reliability may be affected.
 Applicable to devices with outputs that may be tri-stated.
 Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow per JESD51-7.
 HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued.
 Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Unit
V _{CC}	Positive DC Supply Voltage		0.9	3.6	V
V _{IN}	DC Input Voltage		0	3.6	V
V _{OUT}	DC Output Voltage	Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V _{CC} = 0 V)	0 0 0	V _{CC} 3.6 3.6	
T _A	Operating Temperature Range		-40	+85	°C
t _r , t _f	Input Transition Rise and Fall Time	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0	10	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

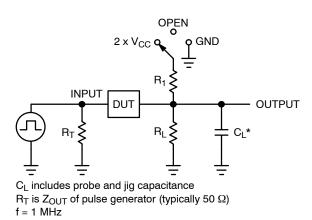
				Т	T _A = 25°C			C to +85°C	
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
VIH	High-Level Input		0.9	_	0.5	-	-	-	V
	Voltage		1.1 to 1.3	0.65 x V _{CC}	-	-	0.65 x V _{CC}	-	1
			1.4 to 1.6	$0.65 \times V_{CC}$	-	-	$0.65 \times V_{CC}$	-	1
			1.65 to 1.95	$0.65 \times V_{CC}$	-	-	$0.65 \times V_{CC}$	-	1
			2.3 to <2.7	1.6	-	-	1.6	_	1
			2.7 to 3.6	2.0	-	-	2.0	_	1
V _{IL}	Low-Level Input		0.9	-	0.5	-	-	-	V
	Voltage		1.1 to 1.3	-	-	$0.35 \times V_{CC}$	-	$0.35 \times V_{CC}$	1
			1.4 to 1.6	-	-	$0.35 \times V_{CC}$	-	$0.35 \times V_{CC}$	
			1.65 to 1.95	-	-	$0.35 \times V_{CC}$	-	$0.35 \times V_{CC}$	1
			2.3 to <2.7	-	-	0.7	-	0.7	1
			2.7 to 3.6	-	-	0.8	-	0.8	1
V _{OH}	High-Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}$							V
	Voltage	I _{OH} = -100 μA	0.9	-	V _{CC} – 0.1	-	-	-	
			1.1 to 1.3	$V_{CC} - 0.1$	-	-	$V_{CC}-0.1$	-	
			1.4 to 1.6	$V_{CC}-0.1$	-	-	$V_{CC}-0.1$	-	
			1.65 to 1.95	$V_{CC} - 0.2$	-	-	$V_{CC} - 0.2$	-	
			2.3 to <2.7	$V_{CC}-0.2$	-	-	$V_{CC}-0.2$	-	
			2.7 to 3.6	$V_{CC} - 0.2$	-	-	$V_{CC} - 0.2$	-	
		$I_{OH} = -2 \text{ mA}$	1.1 o 1.3	$0.75 \times V_{CC}$	-	-	$0.75 \times V_{CC}$	-	
		$I_{OH} = -4 \text{ mA}$	1.4 to 1.6	$0.75 \times V_{CC}$	-	-	$0.75 \times V_{CC}$	-	
		I _{OH} = -6 mA	1.65 to 1.95	1.25	-	-	1.25	-	
			2.3 to <2.7	2.0	-	-	2.0	-	
		I _{OH} = -12 mA	2.3 to <2.7	1.8	-	-	1.8	-	
			2.7 to 3.6	2.2	-	-	2.2	-	
		I _{OH} = -18 mA	2.3 to <2.7	1.7	-	-	1.7	-]
			2.7 to 3.6	2.4	-	-	2.4	-	
		I _{OH} = -24 mA	2.7 to 3.6	2.2	-	-	2.2	-	

DC ELECTRICAL CHARACTERISTICS (continued)

				٦	Γ _A = 25°	С	T _A = -40°	C to +85°C	
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
V _{OL}	Low-Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$							V
	Output Voltage	I _{OL} = 100 μA	0.9	_	0.1	-	-	-	
			1.1 to 1.3	-	-	0.1	I	0.1	
			1.4 to 1.6	-	-	0.1	-	0.1	
			1.65 to 1.95	-	-	0.2	I	0.2	
			2.3 to < 2.7	-	-	0.2	-	0.2	
			2.7 to 3.6	-	-	0.2	-	0.2	
		I _{OL} = 2 mA	1.1 o 1.3	-	-	$0.25 \times V_{CC}$	-	$0.25 \times V_{CC}$	
		I _{OL} = 4 mA	1.4 to 1.6	-	-	$0.25 \times V_{CC}$	-	$0.25 \times V_{CC}$	
		I _{OL} = 6 mA	1.65 to 1.95	-	-	0.3	-	0.3	
		I _{OL} = 12 mA	2.3 to <2.7	-	-	0.4	-	0.4	
			2.7 to 3.6	-	-	0.4	-	0.4	
		I _{OL} = 18 mA	2.3 to <2.7	-	-	0.6	-	0.6	
			2.7 to 3.6	-	-	0.4	-	0.4	
		I _{OL} = 24 mA	2.7 to 3.6	-	-	0.55	-	0.55	
I _{IN}	Input Leakage Current	$V_{IN} = 0 V \text{ to } 3.6 V$	0.9 to 3.6	-	-	±0.1	-	±0.5	μA
I _{OFF}	Power Off Leakage Current	$V_{IN} = 0 V \text{ to } 3.6 V \text{ or}$ $V_{OUT} = 0 V \text{ to } 3.6 V$	0	_	-	0.5	-	0.5	μA
Icc	Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	0.9 to 3.6	_	-	0.9	-	0.9	μA

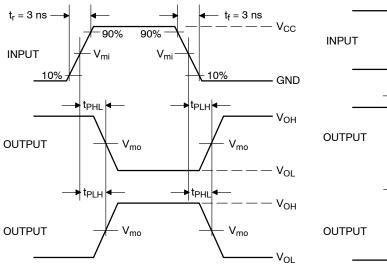
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

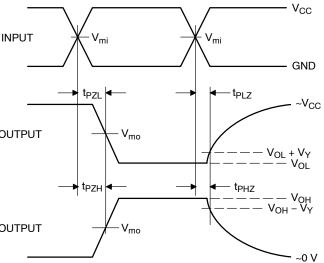
AC ELECTRICAL CHARACTERISTICS


				٦	T _A = 25°C		T _A = -40°C to +85°C		
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Мах	Unit
t _{PLH} ,	Propagation Delay,	R_L = 1 M Ω , C_L = 15 pF	0.9	-	16.6	-	-	-	ns
t _{PHL}	(S or I ₀ or I ₁) to Z (Figures 3 and 4)	$R_L = 2 \text{ k}\Omega, C_L = 15 \text{ pF}$	1.1 to 1.3	-	5.2	15.5	-	18.8	
			1.4 to 1.6	-	3.2	8.5	-	9.5	
		R_L = 500 Ω , C_L = 30 pF	1.65 to 1.95	-	2.7	6.7	-	7.5	
			2.3 to 2.7	-	2.0	4.1	-	4.4	
			2.7 to 3.6	-	1.7	3.4	_	3.6	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

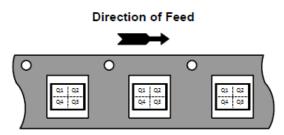
CAPACITIVE CHARACTERISTICS


Symbol	Parameter	Test Condition	Typical (T _A = 25°C)	Unit
C _{IN}	Input Capacitance	V _{CC} = 0 V	2.0	pF
C _{OUT}	Output Capacitance	V _{CC} = 0 V	4.5	pF
C _{PD}	Power Dissipation Capacitance (Note 5)	f = 10 MHz, V_{CC} = 0.9 to 3.6 V, V _{IN} = 0 V or V_{CC}	15.0	pF


5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no-load dynamic power consumption: $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

Test	Switch Position
t _{PLH} / t _{PHL}	Open
t _{PLZ} / t _{PZL}	2 x V _{CC}
t _{PHZ} / t _{PZH}	GND

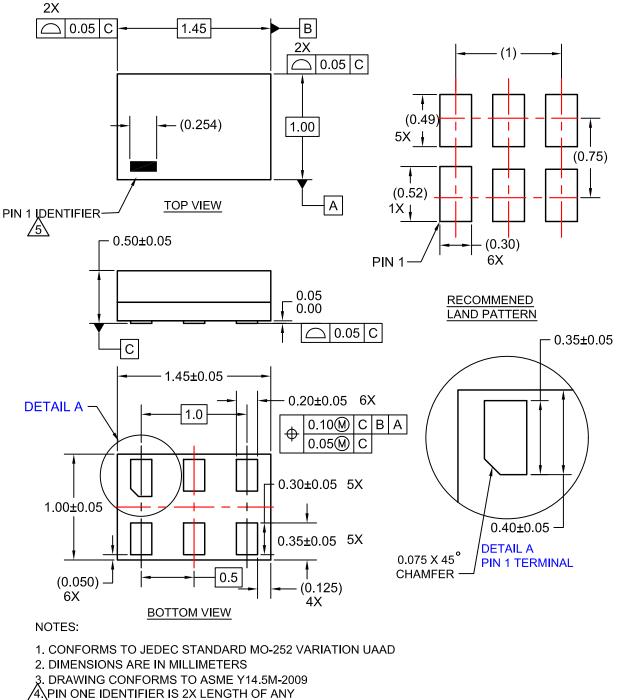
V _{CC} , V	V _{mi} , V	V _{mo} , V	V _Y , V
0.9	V _{CC} / 2	V _{CC} / 2	0.1
1.1 to 1.3	V _{CC} / 2	V _{CC} / 2	0.1
1.4 to 1.6	V _{CC} / 2	V _{CC} / 2	0.1
1.65 to 1.95	V _{CC} / 2	V _{CC} / 2	0.15
2.3 to 2.7	V _{CC} / 2	V _{CC} / 2	0.15
3.0 to 3.6	1.5	1.5	0.3


Figure 4. Switching Waveforms

ORDERING INFORMATION

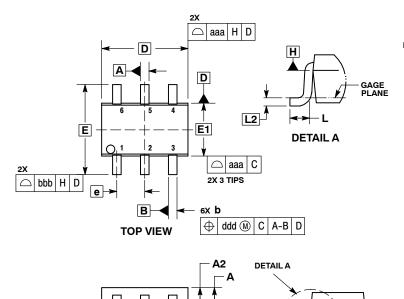
Device	Package	Marking	Pin 1 Orientation (See below)	Shipping [†]
NC7SV19P6X	SC-88	V19	Q4	3000 / Tape & Reel
NC7SV19L6X	MicroPak	AU	Q4	5000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


Pin 1 Orientation in Tape and Reel

MicroPak is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

PACKAGE DIMENSIONS


SIP6 1.45X1.0 CASE 127EB ISSUE O

OTHER LINE IN THE MARK CODE LAYOUT.

PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363 CASE 419B-02 **ISSUE Y**

A1

SIDE VIEW

ex ◯ ccc C

NOTES:

- NOTES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRU-SIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.
 DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H.
 DATUMS A AND B ARE DETERMINED AT DATUM H.
 DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
 DIMENSION D ODES NOT INCLUDE DAMBAR PROTRUSION
- LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION & AT MAXIMUM MATERIAL CONDI-TION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER DADI IS OF THE FOOT 7. RADIUS OF THE FOOT.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α			1.10			0.043	
A1	0.00		0.10	0.000		0.004	
A2	0.70	0.90	1.00	0.027	0.035	0.039	
b	0.15	0.20	0.25	0.006	0.008	0.010	
С	0.08	0.15	0.22	0.003	0.006	0.009	
D	1.80	2.00	2.20	0.070	0.078	0.086	
Е	2.00	2.10	2.20	0.078	0.082	0.086	
E1	1.15	1.25	1.35	0.045	0.049	0.053	
е	(0.65 BS	С	0.026 BSC			
L	0.26	0.36	0.46	0.010	0.014	0.018	
L2		0.15 BS	C	0.006 BSC			
aaa	0.15			0.006			
bbb	0.30			0.012			
ccc	0.10			0.004			
ddd		0.10			0.004		

RECOMMENDED **SOLDERING FOOTPRINT***

END VIEW

С

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** at sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not onvey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products fo

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers & Demultiplexers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

MC74HC163ADTG 74HC253N NLV74VHC1G01DFT1G TC74AC138P(F) NLV14051BDR2G NLV74HC238ADTR2G COMX-CAR-210 5962-8607001EA NTE74LS247 5962-8756601EA SN74LS148N 8CA3052APGGI8 TC74VHC138F(EL,K,F PI3B3251LE PI3B3251QE NTE4028B NTE4514B NTE4515B NTE4543B NTE4547B NTE74LS249 NLV74HC4851AMNTWG MC74LVX257DG M74HCT4851ADWR2G AP4373AW5-7-01 NL7SZ19DBVT1G MC74LVX257DTR2G 74VHC4066AFT(BJ) 74VHCT138AFT(BJ) 74HC158D.652 74HC4052D(BJ) 74VHC138MTC COMX-CAR-P1 JM38510/65852BEA 74VHC138MTCX 74HC138D(BJ) NL7SZ19DFT2G 74AHCT138T16-13 74LCX138FT(AJ) 74LCX157FT(AJ) NL7SZ18MUR2G PCA9540BD,118 QS3VH16233PAG8 SNJ54HC251J SN54LS139AJ SN74CBTLV3257PWG4 SN74ALS156DR SN74AHCT139PWR 74HC251D.652 74HC257D.652