ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

TinyLogic ULP-A 2-Input Exclusive-OR Gate

NC7SV86

The NC7SV86 is a single 2–Input Exclusive–OR Gate in tiny footprint packages. The device is designed to operate for $V_{CC} = 0.9$ V to 3.6 V.

Features

- Designed for 0.9 V to 3.6 V V_{CC} Operation
- 1.7 ns t_{PD} at 3.3 V (Typ)
- Inputs/Outputs Over–Voltage Tolerant up to 3.6 V
- I_{OFF} Supports Partial Power Down Protection
- Source/Sink 24 mA at 3.3 V
- Available in SC−88A and MicroPak[™] Packages
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

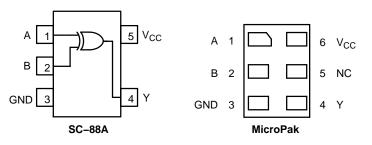
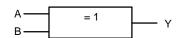
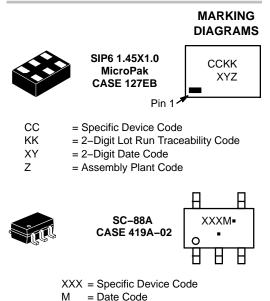



Figure 1. Pinout Diagrams (Top Views)

PIN ASSIGNMENT


Pin	SC88A	MicroPak
1	А	А
2	В	В
3	GND	GND
4	Y	Y
5	V _{CC}	N.C.
6	_	V _{CC}

N.C. = No Connect

ON

ON Semiconductor®

www.onsemi.com

= Pb-Free Package

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 6 of this data sheet.

FUNCTION TABLE

Inp	Output	
A	В	Y
L	L	L
L	Н	Н
Н	L	Н
Н	Н	L

MAXIMUM RATINGS

Symbol	Characteris	tics	Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +4.3	V
V _{IN}	DC Input Voltage		-0.5 to +4.3	V
V _{OUT}	DC Output Voltage	Active–Mode (High or Low State) Tri–State Mode (Note 1) Power–Down Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to +4.3 -0.5 to +4.3	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	-50	mA
I _{OUT}	DC Output Source/Sink Current		±50	mA
I _{CC} or I _{GND}	DC Supply Current per Supply Pin or Ground	d Pin	±50	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 S	Seconds	260	°C
TJ	Junction Temperature Under Bias		+150	°C
θ_{JA}	Thermal Resistance (Note 2)	SC–88A MicroPak	377 154	°C/W
PD	Power Dissipation in Still Air	SC–88A MicroPak	332 812	mW
MSL	Moisture Sensitivity		Level 1	-
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V–0 @ 0.125 in	-
V_{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model Charged Device Model	2000 1000	V
I _{Latchup}	Latchup Performance (Note 4)		±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
Applicable to devices with outputs that may be tri-stated.
Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow per JESD51-7.
HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A

(Machine Model) be discontinued.

4. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Unit
V _{CC}	Positive DC Supply Voltage		0.9	3.6	V
V _{IN}	DC Input Voltage		0	3.6	V
V _{OUT}	DC Output Voltage	Active–Mode (High or Low State) Tri–State Mode (Note 1) Power–Down Mode (V _{CC} = 0 V)	0 0 0	V _{CC} 3.6 3.6	
T _A	Operating Temperature Range		-40	+85	°C
t _r , t _f	Input Transition Rise and Fall Time	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0	10	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

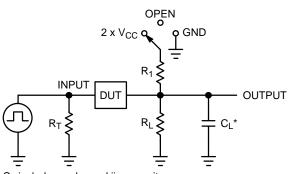
DC ELECTRICAL CHARACTERISTICS

				Т	A = 25°	с	T _A = -40°C	C to +85°C		
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Мах	Unit	
VIH	High-Level Input		0.9	_	0.5	-	_	-	V	
	Voltage		1.1 to 1.3	0.65 x V _{CC}	_	-	0.65 x V _{CC}	-	1	
			1.4 to 1.6	0.65 x V _{CC}	_	-	0.65 x V _{CC}	-	1	
			1.65 to 1.95	$0.65 \times V_{CC}$	-	-	0.65 x V _{CC}	-	1	
			2.3 to <2.7	1.6	-	-	1.6	-	1	
			2.7 to 3.6	2.0	-	_	2.0	_	1	
V _{IL}	Low-Level Input		0.9	-	0.5	-	-	-	V	
	Voltage		1.1 to 1.3	-	-	$0.35 \times V_{CC}$	-	0.35 x V _{CC}	1	
			1.4 to 1.6	-	-	$0.35 \times V_{CC}$	-	0.35 x V _{CC}	1	
			1.65 to 1.95	-	-	$0.35 \times V_{CC}$	-	0.35 x V _{CC}	1	
				2.3 to <2.7	-	-	0.7	-	0.7	1
			2.7 to 3.6	-	-	0.8	_	0.8	1	
V _{OH}	High-Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}$							V	
	Voltage	I _{OH} = -100 μA	0.9	-	V _{CC} - 0.1	-	_	_		
			1.1 to 1.3	V _{CC} – 0.1	-	-	V _{CC} – 0.1	-		
			1.4 to 1.6	V _{CC} – 0.1	-	-	V _{CC} – 0.1	-		
			1.65 to 1.95	V _{CC} – 0.2	-	-	V _{CC} - 0.2	-		
			2.3 to <2.7	V _{CC} – 0.2	-	-	$V_{CC} - 0.2$	-		
			2.7 to 3.6	V _{CC} – 0.2	-	-	V _{CC} - 0.2	-		
		$I_{OH} = -2 \text{ mA}$	1.1 o 1.3	0.75 x V _{CC}	-	-	0.75 x V _{CC}	-		
		$I_{OH} = -4 \text{ mA}$	1.4 to 1.6	$0.75 ext{ x V}_{CC}$	-	-	$0.75 \times V_{CC}$	-		
		$I_{OH} = -6 \text{ mA}$	1.65 to 1.95	1.25	-	-	1.25	-		
			2.3 to <2.7	2.0	-	-	2.0	-		
		I _{OH} = -12 mA	2.3 to <2.7	1.8	-	-	1.8	-		
			2.7 to 3.6	2.2	-	-	2.2	-		
		I _{OH} = -18 mA	2.3 to <2.7	1.7	-	-	1.7	-]	
			2.7 to 3.6	2.4	-	-	2.4	-		
		I _{OH} = -24 mA	2.7 to 3.6	2.2	-	-	2.2	-		

DC ELECTRICAL CHARACTERISTICS (continued)

				٦	T _A = 25°C			T _A = -40°C to +85°C	
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
V _{OL}	Low-Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$							V
	Output Voltage	I _{OL} = 100 μA	0.9	-	0.1	-	-	-	
			1.1 to 1.3	-	-	0.1	-	0.1	
			1.4 to 1.6	-	-	0.1	-	0.1	
			1.65 to 1.95	-	-	0.2	-	0.2	
			2.3 to < 2.7	-	-	0.2	-	0.2	
			2.7 to 3.6	-	-	0.2	-	0.2	
		$I_{OL} = 2 \text{ mA}$	1.1 o 1.3	-	-	$0.25 \times V_{CC}$	-	$0.25 \times V_{CC}$	
		I _{OL} = 4 mA	1.4 to 1.6	-	-	$0.25 \times V_{CC}$	-	$0.25 \mathrm{~x~V_{CC}}$	
		I _{OL} = 6 mA	1.65 to 1.95	-	-	0.3	-	0.3	
		I _{OL} = 12 mA	2.3 to <2.7	-	-	0.4	-	0.4	
			2.7 to 3.6	-	-	0.4	-	0.4	
		I _{OL} = 18 mA	2.3 to <2.7	-	-	0.6	-	0.6	
			2.7 to 3.6	-	-	0.4	-	0.4	
		I _{OL} = 24 mA	2.7 to 3.6	-	-	0.55	-	0.55	
I _{IN}	Input Leakage Current	$V_{IN} = 0 V \text{ to } 3.6 V$	0.9 to 3.6	-	-	±0.1	-	±0.5	μΑ
I _{OFF}	Power Off Leakage Current		0	_	-	0.5	-	0.5	μΑ
Icc	Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	0.9 to 3.6	_	-	0.9	_	0.9	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


AC ELECTRICAL CHARACTERISTICS

				Т	「 _A = 25°0)	T _A = -40°C	C to +85°C	
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
t _{PLH} ,	Propagation Delay,	R_L = 1 MΩ, C_L = 15 pF	0.9	-	17.7	-	-	-	ns
t _{PHL}	(A or B) to Y (Figures 3 and 4)	$R_L = 2 \text{ k}\Omega, C_L = 15 \text{ pF}$	1.1 to 1.3	-	6.0	15.0	-	18.6	
			1.4 to 1.6	-	3.6	8.7	-	9.7	
		$R_L = 500 \ \Omega$, $C_L = 30 \ pF$	1.65 to 1.95	-	2.9	6.0	-	6.8	
			2.3 to 2.7	-	2.0	3.6	-	4.7	
			2.7 to 3.6	-	1.7	3.3	_	4.0	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Condition	Typical (T _A = 25°C)	Unit
C _{IN}	Input Capacitance	$V_{CC} = 0 V$	2.0	pF
C _{OUT}	Output Capacitance	$V_{CC} = 0 V$	4.5	pF
C _{PD}	Power Dissipation Capacitance (Note 5)	f = 10 MHz, V_{CC} = 0.9 to 3.6 V, V _{IN} = 0 V or V _{CC}	8.0	pF

5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption: $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

90%

V_{mi}

Test	Switch Position			
t _{PLH} / t _{PHL}	Open			
t _{PLZ} / t _{PZL}	2 x V _{CC}			
t _{PHZ} / t _{PZH}	GND			

 C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 $\Omega)$ f = 1 MHz

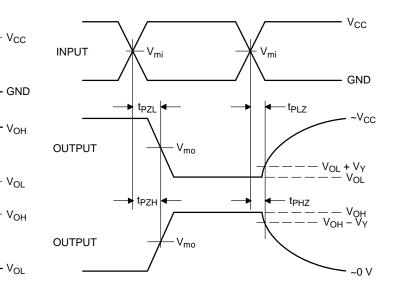
90%

 V_{mo}

 V_{mo}

V_{mi}

♦ t_{PLH}


t_r = 3 ns -

10%

INPUT

OUTPUT

OUTPUT

Eiguro	2	Toct	Circuit
rigure	J.	rest	Circuit

- t_f = 3 ns

 V_{mo}

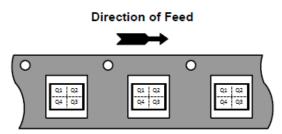
 V_{mo}

10%

|t_{PLH}|◀

+ t_{PHL}

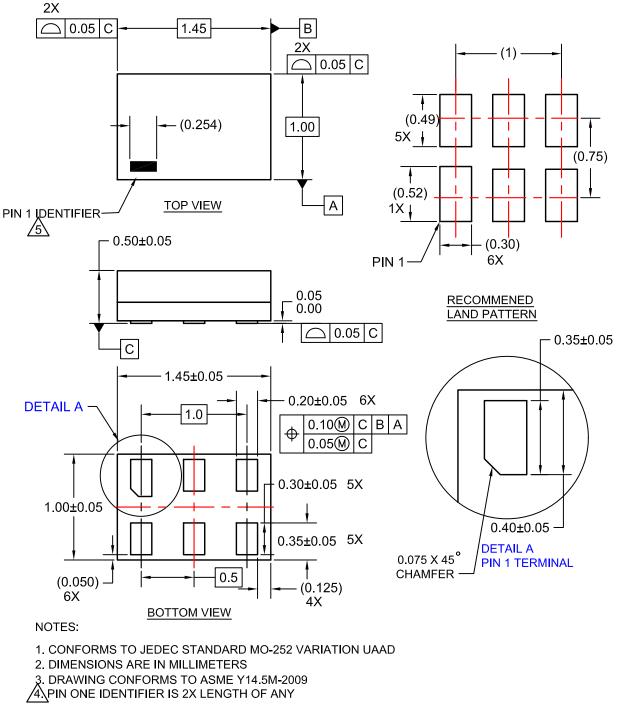
V _{CC} , V	V _{mi} , V	V _{mo} , V	V _Y , V
0.9	V _{CC} / 2	V _{CC} / 2	0.1
1.1 to 1.3	V _{CC} / 2	V _{CC} / 2	0.1
1.4 to 1.6	V _{CC} / 2	V _{CC} / 2	0.1
1.65 to 1.95	V _{CC} / 2	V _{CC} / 2	0.15
2.3 to 2.7	V _{CC} / 2	V _{CC} / 2	0.15
3.0 to 3.6	1.5	1.5	0.3


Figure 4. Switching Waveforms

ORDERING INFORMATION

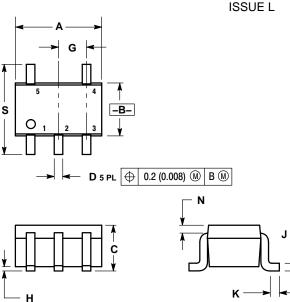
Device	Package	Marking	Pin 1 Orientation (See below)	Shipping [†]
NC7SV86P5X	SC-88A	V86	Q4	3000 / Tape & Reel
NC7SV86L6X	MicroPak	H5	Q4	5000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


Pin 1 Orientation in Tape and Reel

MicroPak is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

PACKAGE DIMENSIONS


SIP6 1.45X1.0 CASE 127EB ISSUE O

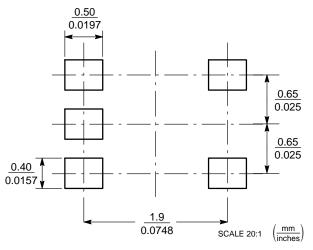
OTHER LINE IN THE MARK CODE LAYOUT.

PACKAGE DIMENSIONS

SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE I

NOTES:

1. DIMENSIONING AND TOLERANCING


PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

 419A–01 OBSOLETE. NEW STANDARD 419A–02.

 DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
С	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026 BSC		0.65 BSC	
н		0.004		0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
Ν	0.008 REF		0.20 REF	
S	0.079	0.087	2.00	2.20

SOLDER FOOTPRINT

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death assoc

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

74HC85N NLU1G32AMUTCG NLV7SZ58DFT2G CD4068BE NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC32ADTR2G MC74HCT20ADTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV74HC02ADR2G 74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 NLV74HC08ADTR2G NLV74HC14ADR2G NLV74HC20ADR2G NLX2G86MUTCG 5962-8973601DA 74LVC2G02HD4-7 NLU1G00AMUTCG 74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G00HK3-7 74LVC2G86HK3-7 NLX1G99DMUTWG NLVVHC1G00DFT2G NLVHC1G08DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ86USG NLV27WZ00USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7 NLV74HC02ADTR2G NLX1G332CMUTCG NL17SG86P5T5G NL17SZ05P5T5G